Laura Weinstein | Drug Delivery Systems | Best Researcher Award

Laura Weinstein | Drug Delivery Systems | Best Researcher Award

Ms. Laura Weinstein, University of Delaware, United States

Ms. Laura Weinstein is an accomplished biomedical engineering student at the University of Delaware 🎓, set to graduate in May 2025 with a stellar GPA of 3.97. With minors in nanoscale materials and chemistry 🧪, she has led impactful research in nanoparticle drug delivery, orthotic device innovation, and immunoengineering. Her work spans labs at Delaware and Vanderbilt 🏥, earning her top honors including the Eugene du Pont Memorial Scholarship and Best Poster Awards 🏆. Passionate about translational medicine, Laura’s dedication to improving healthcare through engineering solutions marks her as a rising star in biomedical research 🌟.

Publication Profile 

Google Scholar

Education

Ms. Laura Weinstein is currently pursuing an Honors Bachelor of Science in Biomedical Engineering at the University of Delaware, with expected graduation in May 2025 📅. She maintains an outstanding GPA of 3.97 🌟 and complements her major with minors in Nanoscale Materials and Chemistry ⚗️. Her coursework spans core sciences and advanced engineering, including Introductory Biology 🧬, General Chemistry 🧪, Physics ⚛️, and Biomedical Experimental Design 📊. She has also delved into Immunoengineering, Cell Engineering 🧫, Nanomaterials, and Nanomedicine 💉. Proficient in Python and MATLAB 💻, Laura combines technical skills with scientific curiosity, preparing her for groundbreaking biomedical research 🔬.

Awards

Ms. Laura Weinstein has received numerous prestigious honors throughout her academic journey. From 2021–2025, she was awarded the esteemed Eugene du Pont Memorial Scholarship 🎓, covering full tuition, housing, meals, and book expenses. In 2024, she earned 1st place for designing a prototype to secure thoracostomy tubes 🩺. She is also a National Cyber Scholar (2022–2024) 💻 and won the Biomedical Engineering Distinguished Sophomore Award in 2023 🧬. That same year, she was recognized by the Delaware Department of Technology and Information 📡. In 2022, she placed 1st in the Ratcliffe Eco Entrepreneurship Innovation Sprint 🌱🚀

Experience

Ms. Laura Weinstein has been actively engaged in cutting-edge research at the University of Delaware’s Day Lab since January 2022 🏛️. Under the mentorship of Dr. Emily Day and PhD candidate Eric Sterin 👩‍🏫, she developed polymeric nanoparticles for biomimetic cargo delivery via cancer cell membranes 🧫. She contributed to refining purification protocols for DiD-fluorescent nanoparticles 💡 and guided fellow undergraduates in research techniques 📘. Her dedication extended beyond semesters, participating in multiple research fellowships and programs including the 2022 CBER Summer Scholars REU, 2023 Winter Fellowship, and 2024–2025 Summer/Winter Fellowships 🧪📊—highlighting her passion for biomedical innovation.

Research Focus

Ms. Laura Weinstein focuses her research in the dynamic field of biomedical nanotechnology and targeted drug delivery 🧪. Her studies explore cell biomimicry, using cancer cell membranes to improve therapeutic delivery for hematological cancers 🧫🩸. She also investigates nanoparticle purification challenges, ensuring enhanced precision in drug transport systems 🎯. Her work integrates principles of nanomedicine, immunoengineering, and materials science to develop innovative approaches in cancer treatment and diagnostics 🧬. Through her publications and lab experience, Laura contributes to advancing next-generation polymeric nanoparticle technologies—blending engineering and biology to revolutionize patient care and medical outcomes 🚀💊.

Publication Top Notes

Hiding in Plain Sight: Cell Biomimicry for Improving Hematological Cancer Outcomes

Standard purification methods are not sufficient to remove micellular lipophilic dye from polymer nanoparticle solution

Oliwia Kordyl | Drug Delivery Systems | Best Research Article Award

Oliwia Kordyl | Drug Delivery Systems | Best Research Article Award

Ms. Oliwia Kordyl, Poznan Univeristy of Medical Sciences, Poland

Ms. Oliwia Kordyl (b. June 9, 1997) is a dedicated PhD student at Poznan University of Medical Sciences, specializing in 3D printed microneedles for targeted drug delivery. With a background in biotechnology from Adam Mickiewicz University, her work spans molecular biology, pharmaceutical technology, and reproductive genetics. Oliwia has held roles as a lab manager, molecular biologist, and biotechnologist, contributing to innovative projects and scientific conferences. She is skilled in advanced lab techniques and passionate about travel, fitness, and continuous learning.

Publication Profile

orcid

Education

Ms. Oliwia Kordyl is currently pursuing her Ph.D. (Nov 2023–Present) at the Poznan University of Medical Sciences in Poland, focusing on 3D printed microneedles for voriconazole delivery in treating local skin infections. Her research involves optimizing microneedle manufacturing, assessing physicochemical and pharmaceutical properties in vitro, and evaluating drug permeation ex vivo and microbiological effectiveness 🧪🧬. She earned her M.Sc. and B.Sc. in biotechnology from Adam Mickiewicz University (2016–2021), where she explored DNA methylation in oligozoospermia and gene expression in spermatogenesis 🧫. Her academic journey began at K.K. Baczyński Secondary School, specializing in biology, physics, and chemistry 🔬📚.

Experience

Ms. Oliwia Kordyl completed a valuable internship at Novazym Polska in Poznań from July to August 2019. During her time at this renowned biotechnology company, she gained hands-on experience in laboratory techniques and deepened her understanding of industrial biotechnology practices 🔬💼. The internship provided her with practical insights into the daily operations of a biotech firm and allowed her to apply her academic knowledge in a real-world setting 🧪📊. This experience not only enhanced her technical skills but also strengthened her passion for research and innovation in the field of biotechnology, laying a strong foundation for her future scientific endeavors 🚀.

Awards

🏆 Ms. Oliwia Kordyl has actively contributed to the scientific community through speeches and posters at esteemed conferences. She presented on sperm DNA methylation at the 21st Andrology Day (2019) 🧬 and the 21st European Testis Workshop (2021) in Barcelona. Her posters featured at ESHRE 2020, the European Human Genetics Conference (2021), and the 6th Polish Congress of Genetics (2022) showcased her expertise in epigenetics and sperm chromatin structure 🧫📊. In 2023, she co-authored a poster on microneedles for transdermal drug delivery at PolGerSym10 💉. Oliwia also co-authored a publication in the International Journal of Molecular Sciences (2022) 📄📚.

Research Focus

Ms. Oliwia Kordyl’s research focuses on the development of innovative drug delivery systems, particularly microneedle-based technologies for transdermal applications. Her work combines 3D printing, pharmaceutical coatings, and hydrogel systems to enhance the treatment of bacterial and fungal skin infections. She also explores photodynamic therapy and nanotechnology for targeted drug release. Her interdisciplinary approach bridges materials science, biomedical engineering, and pharmaceutics. Additionally, her research extends to epigenetic analysis in human sperm, highlighting her interest in reproductive biology. Her work is at the frontier of personalized medicine, non-invasive therapies, and advanced pharmaceutical technologies.

Publication Top Notes

Optimization of LCD-Based 3D Printing for the Development of Clotrimazole-Coated Microneedle Systems

Microneedle-based arrays – Breakthrough strategy for the treatment of bacterial and fungal skin infections

Microneedle System Coated with Hydrogels Containing Protoporphyrin IX for Potential Application in Pharmaceutical Technology

Global 5mC and 5hmC DNA Levels in Human Sperm Subpopulations with Differentially Protaminated Chromatin in Normo- and Oligoasthenozoospermic Males

YORINOBU MAEDA | Drug Delivery Systems | Pharmaceutical Advancement Award

YORINOBU MAEDA | Drug Delivery Systems | Pharmaceutical Advancement Award

Prof Dr YORINOBU MAEDA, Fukuyama university, Japan

Prof. Dr. Yorinobu Maeda, Ph.D. (Hiroshima University, 1990), is a renowned expert in drug safety, pharmacokinetics, and infection control. As a professor at Fukuyama University and Drug Safety Director, he has advanced renal function-based dosing and prescription optimization. His contributions have earned him multiple awards, including Best Paper Awards (2001, 2005) and an Academic Contribution Award (2014) from the Japanese Society of Pharmaceutical Health Care and Sciences. With a strong academic and clinical impact, Dr. Maeda is a leading figure in pharmaceutical advancements, ensuring better patient safety and treatment efficacy. 🏅🔬

Publication Profile

scopus

Educational and Professional Background

Prof. Dr. Yorinobu Maeda has a distinguished background in pharmaceutical sciences, earning his Ph.D. from Hiroshima University in 1990 🎓. His expertise spans infection control, hospital pharmacy specialization, and drug safety leadership, reflecting his dedication to pharmaceutical advancements 💊. With leadership roles in major hospitals 🏥 and an esteemed position as a professor at Fukuyama University 🎓, he has made significant academic and practical contributions to the field. His work continues to shape the future of pharmacy, ensuring patient safety and advancing healthcare practices for better medical outcomes 🌍🔬.

Contributions to Pharmaceutical Sciences

Prof. Dr. Yorinobu Maeda has made significant contributions to pharmaceutical sciences, particularly in drug safety, pharmacokinetics, and dosage optimization 💊🔬. His research focuses on infection control 🦠, renal function-based dosing 🏥, and improving prescription practices, directly enhancing patient safety and treatment efficacy 👨‍⚕️✅. As a Drug Safety Director, he plays a crucial role in advancing pharmaceutical practices, ensuring medications are used effectively and safely. His dedication to optimizing drug therapy and refining medical protocols continues to have a lasting impact on healthcare, improving outcomes for patients worldwide 🌍💉.

Awards and Recognitions

Prof. Dr. Yorinobu Maeda has made remarkable contributions to the field of pharmaceutical healthcare, earning numerous prestigious accolades from the Japanese Society of Pharmaceutical Health Care and Sciences. His achievements include the Best Paper Awards in 2001 and 2005 🏆, as well as the esteemed Academic Contribution Award in 2014 🎓. These honors highlight his dedication to advancing research and implementing pharmacokinetic principles to enhance patient safety and care 🩺. Dr. Maeda’s work stands as a testament to his unwavering commitment to improving healthcare standards and fostering innovation in pharmaceutical sciences. 🌟

Research Focus

Professor Dr. Yorinobu Maeda is an eminent researcher specializing in pharmaceutical sciences, with a primary focus on drug bioavailability, prodrug development, and therapeutic drug monitoring. His work spans areas such as drug absorption, small intestinal bacterial overgrowth diagnosis, and managing adverse drug reactions. Notable research includes the impact of metal ions on drug efficacy and innovative prodrug strategies. Through collaborative studies, he contributes to optimizing drug delivery systems and clinical pharmacotherapy, enhancing patient safety and treatment outcomes. 🧪💊

Publication Top Notes

5-Aminosalicylic Acid Distribution into the Intestinal Membrane Along the Gastrointestinal Tract After Oral Administration in Rats

Development and Evaluation of EDTA-Treated Rabbits for Bioavailability Study of Chelating Drugs Using Levofloxacin, Ciprofloxacin, Hemiacetal Ester Prodrugs, and Tetracycline

Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth

Ester Prodrugs of Levofloxacin to Prevent Chelate Formation in Presence of Aluminium Ion

Study on the method to avoid infusion‑site adverse events following chemotherapeutic treatment with epirubicin and fosaprepitant using immortalized human umbilical vein endothelial cells

Effect of aluminium ion on bioavailability of levofloxacin following oral administration of cilexetil ester of levofloxacin as prodrug in rats

 

Liqun Jiang | Drug Delivery Systems | Best Researcher Award

Assist. Prof. Dr. Liqun Jiang | Drug Delivery Systems | Best Researcher Award

Xuzhou Medical University, China

Author Profile

🎓Early Academic Pursuits 

Liqun Jiang began his academic journey with a deep interest in pharmaceutical sciences and biotechnology. His foundational studies were driven by a passion for discovering innovative solutions to pressing medical challenges. During his early years, Jiang demonstrated exceptional aptitude in the fields of drug development and delivery systems, excelling in both theoretical and applied sciences. These formative experiences laid the groundwork for his future endeavors in advanced pharmaceutical research. Jiang’s dedication to academic excellence led him to pursue specialized training and advanced education, equipping him with the knowledge and skills essential for groundbreaking contributions to medical science.

🌟Professional Endeavors 

Currently serving as an Associate Professor at Xuzhou Medical University, Liqun Jiang has established himself as a key figure in pharmaceutical engineering. His role extends beyond teaching, as he actively participates in high-impact research initiatives. A youth member of the Pharmaceutical Engineering Committee of the Chinese Pharmaceutical Society, Jiang is deeply involved in projects focused on novel drug delivery systems, particularly for respiratory diseases.

He has been instrumental in nearly 10 prestigious research projects, including the national 863 Program and major drug innovation programs. Jiang has successfully overseen the development of approximately 10 products, ranging from pharmaceuticals and disinfection solutions to specialized medical foods. His collaborative efforts with pharmaceutical companies have led to the development of a drug liposome inhalation agent, which has now progressed to pilot production stages.

🔬Contributions and Research Focus 

Jiang Liqun’s research is primarily centered on novel drug delivery systems for respiratory diseases, with a particular emphasis on pulmonary edema. His contributions to the field are both diverse and impactful, including: Developing pressure-sensitive multivesicular liposomes for delivering amlodipine besylate, Innovating therapies with exogenous eNOS genes to combat high-altitude pulmonary edema, Utilizing mesenchymal stem cell exosomes for advanced inhalation therapies, Designing high-efficiency powder mist inhalants for high-altitude conditions.

🏆Accolades and Recognition 

Liqun Jiang’s academic and professional achievements have garnered widespread recognition. His research contributions are evidenced by: Nearly 30 peer-reviewed publications in reputed journals, 10 authorized patents, with 8 more under processing, An impressive citation index of 312, reflecting the high impact of his work, Close collaborations with pharmaceutical companies, leading to tangible advancements in drug development and commercialization, Jiang’s dedication to his field is further highlighted by his active participation in the Chinese Pharmaceutical Society, where he contributes as a youth member in shaping the future of pharmaceutical engineering.

🌏Impact and Influence 

Jiang Liqun’s work has had a profound impact on both academia and industry. His innovative strategies for addressing respiratory diseases have paved the way for safer, more effective therapeutic interventions. By integrating cutting-edge drug delivery systems into clinical practice, Jiang has set a benchmark in the treatment of pulmonary conditions. His ability to bridge the gap between research and application has made him a valuable collaborator for pharmaceutical companies seeking to bring advanced therapies to market.

🌟Legacy and Future Contributions 

Jiang Liqun’s legacy lies in his relentless pursuit of innovation and excellence in pharmaceutical research. His groundbreaking work in drug delivery systems has already influenced the development of treatments for high-altitude pulmonary edema and other respiratory conditions. Looking ahead, Jiang aims to expand his research into broader areas of pulmonary medicine, focusing on the use of biotechnology and nanotechnology in drug development. He envisions a future where precision medicine and targeted therapies play a pivotal role in treating respiratory diseases, improving outcomes for patients worldwide. Jiang is committed to mentoring the next generation of researchers and fostering collaborations that advance the frontiers of pharmaceutical science.

🌟Final Thoughts 

With a career marked by innovation, dedication, and impactful contributions, Liqun Jiang exemplifies the qualities of a trailblazing researcher. His work continues to shape the future of respiratory medicine, leaving an indelible mark on both academia and industry. Through his ongoing efforts, Jiang inspires a new wave of scientific inquiry and collaboration, ensuring his legacy will resonate for years to come.

📖Notable Publications

Pressure-sensitive multivesicular liposomes as a smart drug-delivery system for high-altitude pulmonary edema
  • Authors : Li, H., Liu, S., Dai, W., Jin, F., Jiang, L.
  • Journal: Controlled Release
  • Year: 2024
Inhalation of panaxadiol alleviates lung inflammation via inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells
  • Authors : Wang, Y., Wei, H., Song, Z., Shu, Q., Xie, Y.
  • Journal: Ginseng Research
  • Year: 2024
Dry Powder Formulations for Inhalation Require a Smaller Aerodynamic Diameter for Usage at High Altitude
A large particle size is required by a nano/micron sized-fluticasone propionate inhalable suspension for asthma treatment
A simple liposome-based bionic bacterium for tumor treatment by re-education of tumor-associated microphages in combination with chemotherapy