Zefeng Lai | Drug Delivery Systems | Excellence in Pharmaceutical Innovation Award

Prof. Dr. Zefeng Lai | Drug Delivery Systems | Excellence in Pharmaceutical Innovation Award

Guangxi Medical University | China

Prof. Dr. Zefeng Lai is a leading figure in the field of pharmaceutical science, recognized for his pioneering work in nanomedicine, drug delivery, and nanotoxicology. He serves as a Professor of Pharmaceutical Science at the School of Pharmacy, Guangxi Medical University, Nanning, China, where he has made outstanding contributions to biomedical research and academic development. Having earned his BSc and PhD from the State Key Laboratory of Crystal Materials, Shandong University, and completed postdoctoral research in Drug Delivery and Biomedical Effects of Nanomaterials, Dr. Lai’s expertise integrates material chemistry with pharmacological innovation to enhance therapeutic outcomes.His research explores the mechanisms and biomedical applications of carbon-based nanodrug carriers, focusing on their transcytosis, biodistribution, and immunological effects. He has led multiple high-impact national and provincial projects, including investigations into mesona chinensis polysaccharides, fibrinolytic enzymes from marine sources, and liver-targeted nanocarriers. His work on the biotoxicity of carboxylated single-walled carbon nanotubes using zebrafish and mammalian models has been particularly influential, advancing the global understanding of nanomaterial safety in pharmaceutical formulations.Prof. Lai’s scholarly influence is reflected in his strong research metrics, with 293 citations across 279 documents, based on 19 published papers, and an impressive h-index of 10, demonstrating his consistent impact and the recognition of his contributions by the global scientific community.His groundbreaking publications demonstrate his multidisciplinary research vision. His paper Photothermal Therapeutic Gold Nanoparticles Loaded with PD-L1 siRNA Enhanced Killing of NSCLC Cells by Immune Cells presents a novel nanoplatform integrating photothermal therapy and immunomodulation for non-small cell lung cancer treatment. His work Immunogenic Nano-Phthalocyanine Enables Oxygen-Economic Photodynamic Therapy for Hepatocellular Carcinoma introduces a new generation of oxygen-efficient nanotherapeutics for liver cancer. Other notable studies include Effect of Carboxylated Single-Walled Carbon Nanotubes on the Development and Morphology of Zebrafish Embryos, High Throughput CircRNA Sequencing Analysis Reveals Novel Insights into the Mechanism of Nitidine Chloride against Hepatocellular Carcinoma, and Toxic Effect of Long-Term Intravenous Injection of Carboxylated Single-Walled Carbon Nanotubes on Kidney in Rats. His research on Nitidine Chloride Induced Colorectal Cancer HT29 Cells Apoptosis Through the Cytochrome c-Mediated Mitochondrial Pathways and Long-Term Intravenous Administration of Carboxylated Single-Walled Carbon Nanotubes Induces Persistent Accumulation in the Lungs and Pulmonary Fibrosis via the NF-κB Pathway underscores his deep engagement with molecular pharmacology and nanotoxicology.

Profile: Scopus

Featured Publications

Lai, Z., Liu, Y., He, L., Wang, X., Zhang, H., & Zhao, J. (2023). Immunogenic nano-phthalocyanine enables oxygen-economic photodynamic therapy for hepatocellular carcinoma. Biomaterials, 295, 121992.

Hui Li | Drug Delivery Systems | Best Researcher Award

Dr. Hui Li | Drug Delivery Systems | Best Researcher Award

Woosuk University | South Korea

Dr. Hui Li is a distinguished medical scientist and otolaryngologist whose work bridges clinical medicine, translational research, and pharmaceutical innovation. He earned his Ph.D. in Translational Medicine from Seoul National University College of Medicine in Korea, where his research focused on the molecular mechanisms underlying hearing loss and radiation-induced cellular changes. Prior to his doctoral training, he completed both his Master’s and Bachelor’s degrees in Clinical Medicine from Yanbian University of Medicine in China, establishing a strong foundation in clinical diagnostics, therapeutic approaches, and patient-centered medical care.Dr. Li’s professional journey reflects an impressive progression from clinical expertise to cutting-edge biomedical research. He began his career as a medical doctor and otolaryngologist at Yanbian Yongjeong National Hospital, where he honed his clinical acumen in diagnosing and treating ear, nose, and throat disorders. His clinical excellence led him to serve as a resident and research fellow in the Department of Otolaryngology at the Affiliated Hospital of Yanbian University of Medicine, where he began integrating research into his clinical practice. He later worked as a specialist at the Yanbian National Ophthalmology & Otolaryngology Hospital, focusing on complex cases of auditory and vestibular dysfunction. These formative years in medical practice equipped him with invaluable clinical insight that continues to inform his research in translational medicine and pharmacotherapeutics.Dr. Li transitioned into academic research with his appointment as a doctoral researcher at the Department of Translational Medicine (Otolaryngology) at Seoul National University College of Medicine. There, he conducted pivotal studies on novel therapeutic delivery systems, inner ear protection mechanisms, and the molecular pathways involved in hearing impairment. His research excellence earned him postdoctoral appointments at the Cancer Research Institute within the same university, where he explored immune-modulatory effects of radiotherapy and the potential of macrophage polarization in mitigating cancer progression. Currently, he serves as a Postdoctoral Research Fellow at the Laboratory of Biopharmaceutics, Industry-Academia Cooperation Foundation, Woosuk University, Korea, where he investigates advanced drug formulations, biopharmaceutical delivery mechanisms, and the translational potential of controlled-release therapeutics.

Profile: Scopus

Featured Publications

Li, J., Wang, H., Zhang, Y., & Chen, L. (2022). Comprehensive intervention and effect of martial arts routines on children with autism. Journal of Environmental and Public Health, 2022.

Ahmad Saeed | Drug Delivery Systems | Best Researcher Award

Mr. Ahmad Saeed | Drug Delivery Systems | Best Researcher Award

University of Education Lahore | Pakistan

Mr. Ahmad Saeed is a dedicated researcher in the field of analytical chemistry with a strong academic and research background. Currently pursuing a Bachelor of Science in Chemistry at the University of Education, Township Campus, Lahore, he has consistently demonstrated academic excellence with a notable CGPA of 3.60. Throughout his academic journey, he has actively participated in multiple research projects, including the development of biodegradable films containing biological macromolecules impregnated with curcumin for food preservation, investigation of the toxic effects of heavy metals in cosmetics on human health, and the advancement of revolutionized electrochemical sensors utilizing 2D materials as sensor electrodes. He has also contributed to innovative environmental projects, such as Clay Eco Filters, aimed at developing metal nanoparticle-impregnated clay tablets for water purification, and Ecofoil, focused on synthesizing biodegradable films for sustainable food packaging solutions.Mr. Ahmad Saeed has enriched his academic experience through hands-on laboratory work as a Graduate Research Assistant, where he worked extensively on projects involving the synthesis of nanomaterials for environmental and analytical applications. As a Teaching Assistant, he contributed to the academic development of students by assisting in atomic spectrophotometry courses, grading assignments, and providing academic guidance. He has participated in major conferences, including the International Conference on Trends and Research in Chemistry and the International Conference on Material Chemistry and Industrial Technologies, serving as both an organizer and a participant, thus gaining exposure to scholarly dialogues and academic networking.His research contributions are reflected in several scholarly publications, including Multivariate Statistical Analysis of Cosmetics Due to Potentially Toxic/Heavy Metal(loid) Contamination: Source Identification for Sustainability and Human Health Risk Assessment published in Sustainability, Structural Development of Curcumin: A Natural Product Arsenal for Diverse Therapeutic Targets – Seizing Opportunities Through Serendipity and Rational Design in the Journal of Molecular Structure, and FDA-Approved Sulfonamides-Containing Molecules: An Insightful Review on the Synthesis Strategy, Medical Indication, and Their Binding Mode under review in Chemistry and Biodiversity. These works highlight his interest in environmental sustainability, analytical chemistry, natural products, and biomedical applications.

Profile: Orcid

Featured Publications

Ahmed, M., Basheer, S., Mughram, M. H. A., Iqbal, D. N., Qamar, S., Saeed, A., Batool, R., Sanaullah, M., Raza, H., & Hussain, R. (2025). Structural development of curcumin: A natural product arsenal for diverse therapeutic targets—Seizing opportunities through serendipity and rational design. Journal of Molecular Structure.

Aslam, A. A., Ahmed, M., Mughram, M. H. A. L., Habib-ur-Rahman Mahmood, M., Basheer, S., Hussain, R., Eiman, E., Sanaullah, M., Raza, H., Saeed, A., et al. (2025). Sulfonamides as a promising scaffold in drug discovery: An insightful review on FDA-approved molecules, synthesis strategy, medical indication, and their binding mode. Chemistry and Biodiversity.

Ahmed, M., Basheer, S., Mughram, M. H. A., Iqbal, D. N., Qamar, S., Saeed, A., Batool, R., Sanaullah, M., Raza, H., & Hussain, R. (2025). Multivariate statistical analysis of cosmetics due to potentially toxic/heavy metal(loid) contamination: Source identification for sustainability and human health risk assessment. Sustainability.

Zhen Jin | Drug Delivery Systems | Best Researcher Award

Dr. Zhen Jin | Drug Delivery Systems | Best Researcher Award

Assistant Professor at Xinxiang Medical University | China

Dr. Zhen Jin is a distinguished researcher specializing in nanomedicine, controlled drug delivery, and medical micro-nano robots. He completed doctoral and postdoctoral research at the Medical Robotics Research Institute of Chonnam National University, South Korea, before joining Xinxiang Medical College. His innovative work integrates nanodrug design, advanced therapeutic delivery systems, and cancer diagnostics. With more than 30 SCI-indexed publications, including numerous first-author papers, and four granted national invention patents, his contributions continue to influence biomedical science. His pioneering developments in imaging-guided therapy and synergistic nanocomposites highlight his commitment to advancing cancer treatment and medical robotics research globally.

Publication Profile 

Google Scholar

Education 

Dr. Zhen Jin pursued his doctoral degree at the Medical Robotics Research Institute, Chonnam National University, South Korea, where he also completed postdoctoral research. His academic journey provided a strong foundation in interdisciplinary biomedical engineering, robotics, and nanomedicine. During this period, he engaged in multiple national-level projects, honing expertise in medical micro-nano systems and cancer therapy. This rigorous academic training prepared him to advance research in nanodrugs, controlled drug delivery, and medical robotics. Following this, he transitioned to Xinxiang Medical College, where he integrated his educational background into teaching and research to foster innovation in biomedical sciences.

Experience

Dr. Zhen Jin has extensive research and academic experience, beginning with his doctoral and postdoctoral tenure in South Korea, where he contributed to significant national key projects. His expertise spans nanodrug design, micro-nano robotics, and advanced cancer diagnosis and treatment technologies. Currently, he is a faculty member at Xinxiang Medical College, where he leads cutting-edge projects funded by Henan Province. He has successfully published more than 30 SCI papers, authored key innovations, and secured national invention patents. His experience bridges academia and applied research, positioning him as a leader in biomedical nanotechnology and precision therapeutic development.

Awards and Honors

Dr. Zhen Jin has received recognition for his outstanding contributions to biomedical science, particularly in the fields of nanomedicine and cancer therapy. He has successfully participated in national research projects in South Korea and led provincial-level science and technology projects in China. His impactful research has earned him four national invention patents and numerous publications in high-impact SCI journals. His citation index reflects his growing influence in scientific communities, with an h-index of 21. These honors underscore his position as a promising and innovative researcher, making him a strong candidate for the Best Researcher Award.

Research Focus

Dr. Zhen Jin’s research focuses on nanomedicine, controlled drug delivery systems, and micro-nano robotic platforms for cancer therapy. He has developed multifunctional nanocomposites that combine therapeutic delivery with imaging capabilities for precise diagnosis and treatment. His work on DOX-HSP ananotheranostics exemplifies his focus, showcasing biocompatibility, controlled drug release, and imaging-guided multimodal therapy. By integrating photothermal and chemotherapeutic effects, his studies demonstrate enhanced anti-tumor efficacy. His pioneering approach seeks to overcome challenges of premature drug release and tumor-specific targeting, positioning his research at the forefront of personalized medicine, cancer diagnostics, and next-generation biomedical technologies.

Publication Top Notes

Human adipose–derived mesenchymal stem cell–based medical microrobot system for knee cartilage regeneration in vivo

Hybrid-actuating macrophage-based microrobots for active cancer therapy

A magnetically guided self‐rolled microrobot for targeted drug delivery, real‐time X‐Ray imaging, and microrobot retrieval

A thermo-electromagnetically actuated microrobot for the targeted transport of therapeutic agents

A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair

Multifunctional nanorobot system for active therapeutic delivery and synergistic chemo-photothermal therapy

A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor‐targeting therapy

A soft-magnet-based drug-delivery module for active locomotive intestinal capsule endoscopy using an electromagnetic actuation system

High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose membrane

Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy

Ecofriendly high-performance ionic soft actuators based on graphene-mediated cellulose acetate

Preparation of HIFU-triggered tumor-targeted hyaluronic acid micelles for controlled drug release and enhanced cellular uptake

Feasibility study of dual-targeting paclitaxel-loaded magnetic liposomes using electromagnetic actuation and macrophages

Shape memory alloy–based biopsy device for active locomotive intestinal capsule endoscope

Conclusion

Dr. Zhen Jin pioneering contributions in nanomedicine, micro-nano robots, and controlled drug delivery make him a highly deserving candidate for the Best Researcher Award. His combination of innovative patents, high-impact publications, and cutting-edge theranostic development reflects exceptional promise for shaping the future of biomedical science. With continued emphasis on clinical translation and international engagement, his work is poised to leave a transformative mark on cancer diagnosis and therapy.

Gaetan Ligat | Drug Discovery and Development | Best Researcher Award

Assoc. Prof. Dr. Gaetan Ligat | Drug Discovery and Development | Best Researcher Award

Assoc. Prof. Dr. Gaetan Ligat at Toulouse University | France

Assoc. Prof. Dr. Gaetan Ligat is a molecular virologist and principal investigator at Toulouse University, affiliated with INSERM UMR1291 and CNRS UMR5051. He leads the ViNeDys team at the Toulouse Institute for Infectious and Inflammatory Diseases, focusing on host–human cytomegalovirus interactions in brain tumors and therapeutic innovation. With extensive research and teaching experience across France, he has contributed to advancing antiviral strategies, mentoring young scientists, and promoting scientific communication. He is actively engaged in international collaborations, scientific societies, and community outreach, while securing multiple research grants to strengthen translational virology and oncology research.

Publication Profile 

Google Scholar

Education 

Assoc. Prof. Dr. Gaetan Ligat pursued his scientific training at Limoges University, France. He earned a Master of Science degree in Genetics and Physiology, which laid the foundation for his research career. He then advanced to doctoral studies at INSERM UMR1092, Limoges University, where he specialized in Molecular Virology, completing his PhD with distinction. His academic formation emphasized molecular biology, virus-host interactions, and translational virology, providing expertise in genetics, physiology, and applied biomedical sciences. This strong educational background enabled him to develop a career bridging fundamental research and therapeutic applications, particularly in virology, cancer biology, and innovative antiviral treatment strategies.

Experience 

Assoc. Prof. Dr. Gaetan Ligat is Associate Professor of Virology at Toulouse University, where he also serves as Principal Investigator and group leader of the ViNeDys team at the Infinity Institute. His work focuses on host–HCMV interactions and therapeutic innovation in brain tumors. Previously, he was a postdoctoral researcher at INSERM UMR1110 in Strasbourg, specializing in antiviral strategies. He began his research as a Master’s and PhD candidate at INSERM UMR1092, Limoges. Alongside research, he has coordinated training programs, practical courses, and supervised over 20 students. He is deeply involved in scientific societies, equality initiatives, and international collaborations.

Awards and Honors 

Assoc. Prof. Dr. Gaetan Ligat has received numerous prestigious recognitions, including the National Thesis Prize from the French Society of Microbiology and fellowships from the French National Agency for Research on AIDS and Viral Hepatitis (ANRS). He was awarded an ESCMID Research Grant, travel grants from the French Society of Microbiology, and registration bursaries for international congresses. His successful fundraising as principal investigator includes support from cancer foundations, patient associations, and Inserm/Regional PhD funding. These honors reflect both his scientific excellence and commitment to translational virology and oncology research. His awards highlight his impact on advancing antiviral and therapeutic research.

Research Focus 

Assoc. Prof. Dr. Gaetan Ligat research focuses on the molecular biology of human cytomegalovirus (HCMV) and its interaction with host cells, particularly in brain tumor environments. His work aims to understand how viral mechanisms contribute to disease progression and to identify novel therapeutic targets. He develops innovative antiviral strategies, including peptides and antibodies targeting HCMV protein interactions. His research also explores inflammatory responses, host-pathogen dynamics, and translational approaches for cancer treatment. Through collaborative projects and funded research programs, he seeks to bridge fundamental virology with therapeutic innovation, advancing the fight against viral infections and HCMV-related diseases in oncology.

Publication Top Notes

The human cytomegalovirus terminase complex as an antiviral target: a close-up view

Capsid assembly modulators as antiviral agents against HBV: molecular mechanisms and clinical perspectives

Hepatitis C virus (HCV)–apolipoprotein interactions and immune evasion and their impact on HCV vaccine design

Hepatitis B virus–host interactions and novel targets for viral cure

Hepatitis B virus core variants, liver fibrosis, and hepatocellular carcinoma

Targeting viral cccDNA for cure of chronic hepatitis B

The Yin and the Yang of extracellular vesicles during viral infections

Structures and divergent mechanisms in capsid maturation and stabilization following genome packaging of human cytomegalovirus and herpesviruses

Contrasting effect of new HCMV pUL54 mutations on antiviral drug susceptibility: benefits and limits of 3D analysis

Interferon‐Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection

Identification of a short sequence in the HCMV terminase pUL56 essential for interaction with pUL89 subunit

Identification of amino acids essential for viral replication in the HCMV helicase-primase complex

Teodora-Eliana Petcov | Drug Delivery Systems | Best Researcher Award

Ms. Teodora-Eliana Petcov | Drug Delivery Systems | Best Researcher Award

Teodora-Eliana Petcov at National University of Science and Technology POLITEHNICA Bucharest | Romania

Teodora Eliana Petcov is a driven biomedical researcher with a strong foundation in biomaterials, molecular biology, and nanotechnology. Passionate about innovation in drug delivery and regenerative medicine, she has already co-authored scientific publications in reputed journals. Her international internships, multidisciplinary skills, and involvement in EU-funded research projects underscore her commitment to advancing medical technologies. Teodora balances research excellence with volunteer leadership, contributing to both academic and community-driven initiatives. With a sharp analytical mind, hands-on lab experience, and cross-cultural exposure, she exemplifies the next generation of biomedical scientists focused on improving patient care through science and innovation.

Publication Profile 

Scopus

Education

Teodora holds a Bachelor’s degree in Medical Engineering from the Polytechnic University of Bucharest  with a focus on biomaterials and medical devices. She is currently pursuing her Master’s in Biocompatible Substances, Materials, and Systems at the National University of Science and Technology POLITEHNICA Bucharest. Her thesis explored the internalization of nano-sized devices in biological structures. She was a visiting student at “Horia Hulubei” Nuclear Institute and Floreasca Emergency Hospital. Her academic path is complemented by certifications in English  and psycho-pedagogical training, showcasing both technical expertise and educational versatility.

Experience 

Teodora has completed multiple research internships, including roles in molecular biology and materials science labs. She gained practical expertise in 3D bioprinting, SEM techniques, SolidWorks, and conducted advanced testing like DSC and DMA. She has contributed to projects at the National Institute of Physics and Nuclear Engineering, University of Campania in Italy, and worked on PNRR-funded research on bone regeneration and multiple myeloma. Additionally, she has volunteered extensively in cultural and scientific event organization, holding assistant coordinator roles in Zenezia and MED, where she honed human resources, leadership, and scientific communication skills.

Awards  

Teodora has been recognized for her academic excellence and community involvement from high school through higher education. She received top honors for her Bachelor’s thesis, was selected for the prestigious ROSE program, and presented at the “Info-Practic” National Symposium on artificial intelligence. She participated in EU-supported initiatives like ERASMUS+ “Be a Buddy, Not a Bully” and contributed to major national projects, including the ongoing PNRR-funded research on personalized bone regeneration. Her work on cutting-edge nanostructures and her leadership in volunteer networks demonstrate her well-rounded excellence and dedication to scientific and societal progress.

Research Focus 

Teodora focuses on biomedical applications of nanotechnology, with a keen interest in targeted drug delivery, biopolymeric material synthesis, and regenerative medicine. Her Master’s research and publications revolve around understanding how nanostructures interact with cellular systems to improve treatment precision in diseases like multiple myeloma. She also explores the use of 3D printed biomaterials and advanced materials characterization techniques (SEM, DSC, DMA). Her interdisciplinary research combines materials science, molecular biology, and bioengineering to design patient-specific, low-toxicity solutions, positioning her at the frontier of precision and personalized medicine.

Publication Top Notes

Title: Nanostructures: An Efficient Drug Delivery Platform for Therapy of Multiple Myeloma
Year: 2025

Conclusion

Teodora Eliana Petcov is a highly promising emerging researcher whose interdisciplinary approach, early scientific contributions, and strong practical expertise align closely with the vision of the Best Researcher Award. Her dedication to innovation in biomaterials, nanotechnology, and regenerative medicine showcases both depth and futuristic relevance.

Ms. Faezeh Aghajannataj Ahangarkola|Drug Delivery Systems | Best Researcher Award

Ms. Faezeh Aghajannataj Ahangarkola |Drug Delivery Systems|Best Researcher Award|

Ms. Faezeh Aghajannataj Ahangarkola at Babol Noshirvani University of Technology,Iran

PROFILE  

Google scholar

 

Early Academic Pursuits 🎓

Faezeh Aghajannataj began her academic journey with a strong foundation in pure chemistry, earning a Bachelor of Science degree from the University of Mazandaran (UMZ) in Babolsar, Iran, in September 2018. Her undergraduate studies focused on the synthesis of pharmaceutical heterocyclics, particularly through multi-component reactions. Under the guidance of Dr. Robabeh Baharfar, Faezeh’s final project received a stellar grade of 4.0/4.0, demonstrating her early aptitude for research and her keen interest in the intersection of chemistry and pharmaceuticals.

Building on her success at UMZ, Faezeh pursued a Master of Science degree in Biotechnology at the Babol Noshirvani University of Technology (BNUT), Babol, Iran. Her graduate research centered on the development of enteric hard capsules for targeting the small intestine, utilizing innovative materials like Pullulan and Eudragit L-100. This research culminated in a thesis titled “Enteric Hard Capsules for Targeting Small Intestine by Pullulan and Eudragit L-100: Processing, Characterization, and In-vitro Drug Release,” which was awarded a perfect grade of 4.0/4.0 (19/20), reflecting the high quality and significance of her work under the mentorship of Dr. Ghasem Najafpour.

Professional Endeavors 🏢

Faezeh’s professional career is marked by a strong focus on research and development in the pharmaceutical and biotechnology industries. During her time at Iran Gelatin Capsule in Tehran, she played a pivotal role as a member of the R&D team from February 2022 to May 2023. Her work primarily involved researching and formulating pullulan capsules at an industrial scale, a task that required both technical expertise and innovative thinking. Additionally, she contributed to the formulation and evaluation of controlled release systems designed to produce enteric-coated capsules without synthetic materials or external coatings, a project that aligns with the growing demand for more natural and sustainable pharmaceutical solutions.

Faezeh also gained significant experience as a teaching assistant during her academic career. She assisted in courses such as Organic Chemistry Laboratory and Physical Chemistry Laboratory at UMZ, and Advanced Engineering Mathematics at BNUT, showcasing her ability to convey complex scientific concepts to students. Her teaching roles not only enriched her understanding of the subjects but also allowed her to contribute to the academic growth of her peers.

Contributions and Research Focus 🔬

Faezeh’s research interests lie at the crossroads of biotechnology, pharmaceutical sciences, and chemistry. Her master’s thesis on enteric hard capsules represents a significant contribution to the field of drug delivery systems, particularly in the development of targeted delivery mechanisms for the small intestine. This work, which involved detailed processing, characterization, and in-vitro drug release studies, has the potential to impact the way oral medications are formulated and administered, particularly in terms of improving drug efficacy and patient outcomes.

Her research has been recognized through the publication of her work in reputable scientific journals. One notable publication is “Towards a Novel Pullulan and Pullulan-Enteric Hard Capsules: Study of Drug Release and Crucial Capsule Features,” co-authored with Dr. Gh. Najafpour and R. Ramezani. This paper, accessible , highlights the innovative approach Faezeh has taken in her research, contributing valuable knowledge to the field of drug delivery systems.

Accolades and Recognition 🏆

Throughout her academic and professional career, Faezeh has consistently achieved high marks and recognition for her work. Her thesis was awarded a perfect grade, reflecting the high esteem in which her research is held. Additionally, her academic achievements during her bachelor’s and master’s studies are underscored by her strong GPA, which stands at 3.6/4.0 (16.95/20) for her master’s degree, and her consistently high grades in her coursework.

Her work has also been recognized within the academic community through her roles as a teaching assistant, where she earned the trust of her professors to guide and mentor students in complex scientific subjects.

Impact and Influence 🌍

Faezeh’s research on drug delivery systems, particularly her focus on enteric capsules, has the potential to significantly impact the pharmaceutical industry. By developing more effective and targeted drug delivery mechanisms, her work could lead to improved patient outcomes, particularly for those with conditions that require precise delivery of medication to the small intestine.

Her influence extends beyond her research, as her roles as a teaching assistant and R&D member have allowed her to mentor and collaborate with others in the field, spreading her knowledge and fostering innovation in both academic and industrial settings.

Legacy and Future Contributions 🌟

Faezeh Aghajannataj is poised to make lasting contributions to the fields of biotechnology and pharmaceutical sciences. Her innovative approach to drug delivery systems and her commitment to research excellence set her apart as a leading figure in her field. As she continues her career, her work is likely to inspire future research and development in the industry, particularly in the creation of more sustainable and effective pharmaceutical solutions.

🎓Publication 

Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae

  • Authors   :Ghasem Najafpour, Habibollah Younesi, Ku Syahidah Ku Ismail
  • Journal    :Bioresource technology
  • Year         :2024

Piperine—the bioactive compound of black pepper: from isolation to medicinal formulations

  • Authors   :Leila Gorgani, Maedeh Mohammadi, Ghasem D Najafpour, Maryam Nikzad
  • Journal    :Comprehensive reviews in food science and food safety
  • Year         :2017

High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor

  • Authors   :GD Najafpour, AAL Zinatizadeh, AR Mohamed, M Hasnain Isa, H Nasrollahzadeh
  • Journal    :Process Biochemistry
  • Year         :2006

Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation

  • Authors   :SS Wong, TT Teng, AL Ahmad, A Zuhairi, G Najafpour
  • Journal    :Journal of hazardous materials
  • Year         :2006

Power generation from organic substrate in batch and continuous flow microbial fuel cell operations

  • Authors   :Mostafa Rahimnejad, Ali Asghar Ghoreyshi, Ghasem Najafpour, Tahereh Jafary
  • Journal    :Applied Energy
  • Year         :2011