Lung-Ji Chang | Gene Therapy | Research Excellence Award

Prof. Lung-Ji Chang | Gene Therapy | Research Excellence Award

Shenzhen Geno-Immune Medical Institute | China

Prof. Lung-Ji Chang is a distinguished molecular microbiologist, immunologist, and gene-therapy pioneer whose career spans major contributions across leading research institutes in North America and Asia. He currently serves as President of the Shenzhen Geno-Immune Medical Institute in China, guiding cutting-edge innovation in immuno-gene therapy and clinical translation. Before this role, he held a professorship at the School of Medicine, University of Electronic Science and Technology in Sichuan, where he further expanded collaborative research in medical biotechnology. His scientific foundation was built through extensive service at the University of Florida, where he progressed through the ranks of the Department of Molecular Genetics and Microbiology at the Powell Gene Therapy Center and the McKnight Brain Institute, eventually holding a tenured professorship and significantly contributing to the UF Health Cancer Center. His earlier academic appointments at the University of Alberta in Medical Microbiology, Immunology, and Infectious Diseases reflect his broad expertise in virology, host–pathogen interactions, and translational therapeutics. Prior to his faculty leadership, he advanced molecular virology research as a Visiting Scholar at the National Institutes of Health in the Laboratory of Molecular Microbiology and previously conducted postdoctoral research at the University of California, San Francisco in Microbiology and Immunology, shaping his foundational approach to virus-host biology.Prof. Chang has led an extensive portfolio of research funded by numerous prestigious agencies and foundations. His projects include Isolation of Human cDNA Encoding for HIV Attachment and Penetration Factors, Characterization of Host Factors Essential for HIV Entry, Molecular Design and Testing of Anti-HIV Mega-Ribozymes, Development of Retroviral Delivery Systems for Anti-HIV Gene Therapy, Anti-Tumor Immuno-Gene Therapy, Study of HIV-Specific Cellular Responses in High-Risk Seronegative Individuals, Development of Human Tumor Models for Combined Immuno-Gene Therapy, Combination Immunogene Therapy for Brain and Skin Cancer, Development of Lentiviral Vectors, Lentiviral Gene Transfer in Human Hematopoietic Stem Cells, Multiple Myeloma-Targeting Immunotherapy, Transdifferentiation of Hepatocytes into Insulin-Producing Cells, Immunotherapy for Tumor and Viral Diseases Using Modified Lymphocytes, Mechanisms of Autoimmunity in Hepatocyte-Derived Endocrine Cells, Molecular Mechanisms of Leiomyoma Growth and Regression, Immunotherapy for Leukemia, Stem and Progenitor Cell Protection for Neurodegenerative Disorders, Immune Cell Therapy Targeting Malignancies, Generation of Pancreatic Beta-Cells from Patient-Specific iPS Cells, Combined CCR5∆32 and siRNA Strategy Against HIV, Immunotherapy Targeting Small Cell Lung Cancer, Vascular Injury Signaling Pathways, Mechanisms of Autoantibody Pathogenesis, Peripheral Clock Dysregulation in Metabolic Disorders, Team-Science Immunotherapy Approaches for Liver Cancer, Innovative T-Cell Receptor Engineering, and Engineered T-Cell Targeting Strategies for Lung Cancer.Across his career, Prof. Chang has been widely recognized for advancing genetic engineering, lentiviral vector development, cancer immunotherapy, HIV research, and translational cell-based therapeutics. His work continues to influence global biomedical research, driving innovations that bridge molecular discoveries with real-world clinical impact.

Profile: Google Scholar

Featured Publications

Chang, L.-J., Urlacher, V., Iwakuma, T., Cui, Y., & Zucali, J. (1999). Efficacy and safety analyses of a recombinant human immunodeficiency virus type 1 derived vector system. Gene Therapy, 6(5), 715–728.

Iwakuma, T., Cui, Y., & Chang, L.-J. (1999). Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology, 261(1), 120–132.

Moreb, J. S., Ucar, D., Han, S., Amory, J. K., Goldstein, A. S., Ostmark, B., & Chang, L.-J. (2012). The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant biological relevance. Chemico-Biological Interactions, 195(1), 52–60.

Higashikawa, F., & Chang, L.-J. (2001). Kinetic analyses of stability of simple and complex retroviral vectors. Virology, 280(1), 124–131.

Moreb, J. S., Baker, H. V., Chang, L.-J., Amaya, M., Lopez, M. C., Ostmark, B., & Chou, W. (2008). ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Molecular Cancer, 7(1), Article 87.

Amendt, B. A., Hesslein, D., Chang, L.-J., & Stoltzfus, C. M. (1994). Presence of negative and positive cis-acting RNA splicing elements within and flanking the first tat coding exon of human immunodeficiency virus type 1. Molecular and Cellular Biology, 14(6), 3960–3970.

Zaiss, A. K., Son, S., & Chang, L.-J. (2002). RNA 3′ readthrough of oncoretrovirus and lentivirus: implications for vector safety and efficacy. Journal of Virology, 76(14), 7209–7219.

Abdellatif Benraiss | Gene Therapy |

Abdellatif Benraiss | Gene Therapy | Best Researcher Award

Dr. Abdellatif Benraiss, Universiy of Rochester, United States

Dr. Abdellatif Benraiss is a distinguished neuroscientist 🧠 specializing in neurobiology, stem cell research 🌱, and gene therapy 🧬. With academic roots in Morocco 🇲🇦 and France 🇫🇷, he earned his Ph.D. in Neurobiology in 1996. His postdoctoral and faculty work in top institutions like Cornell University 🇺🇸 and the University of Rochester has led to pioneering research in Huntington’s disease 🧩, gene transfer therapies 💉, and adult brain regeneration 🧪. He is an esteemed member of several scientific societies 🌍 and a recipient of prestigious awards, including the 2022 Huntington’s Disease Foundation Research Award 🏆.

Publication Profile

Google Scholar

Education

Dr. Abdellatif Benraiss began his academic journey in Morocco 🇲🇦, earning a B.S. in Animal Biology 🐾 from Cadi Ayyad University in 1990. He continued his studies in France 🇫🇷 at Aix-Marseille II University, receiving a second B.S. in Genetics 🧬 in 1991, an M.S. in Neurobiology 🧠 in 1992, and a Ph.D. in Neurobiology in 1996. Pursuing advanced research, he completed a postdoctoral fellowship in Molecular Neurobiology 🔬 at Cornell University Medical College, New York 🇺🇸 (1997–2002), and earned an HDR degree in Gene Therapy 💉 from René Descartes University, Paris, in 2004.

Awards

Dr. Abdellatif Benraiss has been recognized with numerous prestigious honors for his groundbreaking work in neuroscience and gene therapy 🧠💉. In 2022, he received the Huntington’s Disease Foundation Research Award 🧬. He was awarded the NYSTEM Investigator-Initiated Research Project Award in 2011 🧪. His contributions to neurodegenerative disease research earned him the European Leukodystrophy Association (ELA) Award in both 2004 and 2005 🧠🌍. Earlier, in 2003 and 2004, he received fellowships from the French Muscular Dystrophy Association (AFM) 💪🇫🇷. In 2001, he was honored with the Aging Foundation Award from Cornell Medical School 🏛️📜.

Research Focus

Dr. Abdellatif Benraiss’s research focuses on neuroregeneration, gene therapy, and glial cell biology within the context of neurodegenerative diseases 🧠💉. He has pioneered studies on induced neurogenesis in the adult brain, particularly in Huntington’s disease models 🧬, demonstrating how new neurons and glial cells can slow disease progression. His innovative work in gene transfer technologies using viral vectors has contributed to therapies for disorders like metachromatic leukodystrophy and Alzheimer’s disease 🧪. He also explores glial chimerism, aiming to replace diseased brain cells with healthy ones. His multidisciplinary research bridges stem cell therapy, molecular neuroscience, and regenerative medicine 🧫🧍‍♂️.

Publication Top Notes

In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus

Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain

SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions

Nitric oxide negatively regulates mammalian adult neurogenesis

Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter

Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation

Promoter‐targeted selection and isolation of neural progenitor cells from the adult human ventricular zone

Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal …

Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s …

High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain

Human glia can both induce and rescue aspects of disease phenotype in Huntington disease

Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain

Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease

Neuronal transgene expression in dominant-negative SNARE mice

PDGF-B is required for development of the glymphatic system

Fluorescent Ca2+ indicators directly inhibit the Na,K-ATPase and disrupt cellular functions

Chen Xie | Gene Therapy | Best Researcher Award

Chen Xie | Gene Therapy | Best Researcher Award

Assoc. Prof. Dr. Chen Xie, Medical Research Center, the Eighth Affiliated Hospital of Sun Yat-sen University, China

Assoc. Prof. Dr. Chen Xie is a distinguished researcher at the Medical Research Center, Eighth Affiliated Hospital of Sun Yat-Sen University. With a Ph.D. in Biochemical Engineering from Huaqiao University and postdoctoral experience in genetics at Sun Yat-Sen University, his work focuses on inflammation, DNA damage, senescence, and noncoding RNAs. 🧬 He has published eight impactful papers in journals such as Signal Transduct Target Ther, Mol Cell, and Cancer Immunol Res and holds an H-index of 9. 🧪 Dr. Xie is a recipient of multiple national honors and leads NSFC-funded research advancing disease-related molecular mechanisms.

Publication Profile

orcid

Education

Assoc. Prof. Dr. Chen Xie is a dedicated researcher with a strong background in biochemical and genetic sciences. He began his academic journey with a Bachelor’s degree in Bioengineering from Huaqiao University 🎓 (2007–2011), followed by a Master’s in Genetics from Sun Yat-Sen University 🔬 (2011–2014). He earned his Ph.D. in Biochemical Engineering in 2018 🧪. Dr. Xie completed a postdoctoral fellowship at Sun Yat-Sen University (2018–2021), and then served as Assistant Professor (2021–2025). Since March 2025, he has been an Associate Professor at the Medical Research Center, Eighth Affiliated Hospital of Sun Yat-Sen University 🏥, advancing biomedical research.

Experience

Assoc. Prof. Dr. Chen Xie mainly focuses on exploring the intricate relationship between inflammation, DNA damage, cellular senescence, noncoding RNAs, and human diseases 🧬. His impactful research has earned him prestigious honors such as the National Natural Science Foundation of China award, the National Scholarship 🏅, the First Prize Scholarship of Huaqiao University, and the Alumni Scholarship 🎓. Dr. Xie has published 8 influential papers in top-tier journals including Signal Transduction and Targeted Therapy, Molecular Cell, and Cancer Immunology Research 📚. With an H-index of 9, he continues to contribute significantly to biomedical science 🧫.

Awards

Assoc. Prof. Dr. Chen Xie has received several prestigious awards in recognition of his academic excellence and research contributions 🎓. He was honored with a National Scholarship for his outstanding performance and dedication to scientific advancement. During his studies at Huaqiao University, he earned the First Prize Scholarship 🥇, highlighting his exceptional academic achievements. Additionally, he received an Alumni Scholarship, reflecting the strong support and recognition from his academic community 🌟. These accolades underscore Dr. Xie’s commitment to excellence in the fields of biochemical engineering, genetics, and biomedical research 🔬.

Research Focus

Assoc. Prof. Dr. Chen Xie is a leading researcher in the fields of molecular biology, epigenetics, and cellular senescence, with a strong emphasis on mechanisms of vascular and pulmonary aging, DNA damage repair, and RNA modifications (e.g., m6A). 🧬 His work uncovers how factors like GATA6, YTHDC1, and FTO regulate aging, fibrosis, cancer, and immune responses, often via intricate signaling pathways and RNA interactions. 🧠🧫 He contributes significantly to understanding vascular calcification, fibrosis, and glioma biology, advancing targeted therapies. His research bridges cellular aging and precision medicine, making a profound impact on age-related and inflammatory diseases.

Publication Top Notes

The transcription factor GATA6 accelerates vascular smooth muscle cell senescence-related arterial calcification by counteracting the role of anti-aging factor SIRT6 and impeding DNA damage repair

YTHDC1 delays cellular senescence and pulmonary fibrosis by activating ATR in an m6A-independent manner

C5a-C5aR1 induces endoplasmic reticulum stress to accelerate vascular calcification <i>via</i> PERK-eIF2α-ATF4-CREB3L1 pathway

UBQLN1 deficiency mediates telomere shortening and IPF through interacting with RPA1

Data from FTO Inhibition Enhances the Antitumor Effect of Temozolomide by Targeting MYC-miR-155/23a Cluster-MXI1 Feedback Circuit in Glioma

Supplementary Data from FTO Inhibition Enhances the Antitumor Effect of Temozolomide by Targeting MYC-miR-155/23a Cluster-MXI1 Feedback Circuit in Glioma

cGAS guards against chromosome end-to-end fusions during mitosis and facilitates replicative senescence

Therapeutic potential of C1632 by inhibition of SARS-CoV-2 replication and viral-induced inflammation through upregulating let-7

SON DINH PHONG | Gene Therapy | Best Researcher Award

SON DINH PHONG | Gene Therapy | Best Researcher Award

Dr SON DINH PHONG, DUYTAN UNIVERSITY, Vietnam

Dr. Dinh Phong Son is a dedicated researcher in molecular medicine at Duy Tan University, Vietnam. With a Ph.D. from Guangxi Medical University, China, and a background in laboratory medicine from Hue University of Medicine and Pharmacy, his research focuses on molecular biomarkers for early disease detection 🧪🔬. He explores the LncRNA/CircRNA/miRNA/gene/protein-drug interaction network and gene-editing techniques like CRISPR/Cas9 for targeted therapy. His work on cardiovascular disease and cancer diagnostics has been published in prestigious journals 📚🧑‍🔬. Passionate about advancing molecular biology, he aspires to contribute to innovative breakthroughs in disease research.

Publication Profile

orcid

Education

Dr. Dinh Phong Son 🎓 holds a degree in Laboratory Medicine Technique from Hue University of Medicine and Pharmacy, Vietnam, and a Ph.D. in Molecular Medicine from Guangxi Medical University, China. 🧬 His expertise lies in molecular biology, with a strong focus on disease biomarkers and gene-targeted therapies. 🏥🔬 With a solid academic foundation, he has contributed significantly to scientific advancements, particularly in precision medicine and diagnostics. His research aims to enhance medical treatments by identifying key genetic markers, paving the way for innovative therapeutic approaches. 🌍✨ Dr. Son’s dedication to science continues to drive breakthroughs in healthcare. 💡👨‍⚕️

Research and Innovations

Dr. Son Dinh Phong 🔬 is deeply engaged in advancing molecular biology through next-generation sequencing and online medical databases. His primary focus is identifying potential biomarkers for early disease detection, including diabetes, cardiovascular diseases, stroke, and cancer. 🧬🩺 His research also explores gene-targeted therapies, utilizing CRISPR/Cas9 for gene editing, overexpression, and silencing. 🏥 His studies on LncRNA/CircRNA/miRNA/gene/protein-drug interaction networks provide a foundation for future medical breakthroughs. 📊✨ Committed to innovation, Dr. Son’s ongoing work (2023-2025) aims to drive scientific progress, hoping for greater support to expand molecular biology research worldwide. 🌍💡

Research Contributions

Dr. Son Dinh Phong 🔬 is highly proficient in advanced molecular biology techniques, including PCR, qPCR, and sequencing analysis 🧪🧬. He specializes in CRISPR/Cas9 genome editing, RNA silencing, and overexpression assays, contributing to groundbreaking gene therapy research. 🏥 His expertise also includes cell culture, western blotting, and fluorescence in situ hybridization, essential for studying gene expression and protein interactions. 🔍🧫 Additionally, he excels in bioinformatics and molecular docking simulations, enabling in-depth analysis of gene interactions and drug responses. 💻💊 With a strong foundation in computational biology, Dr. Son continues to drive innovation in precision medicine and molecular diagnostics. 🚀✨

Editorial Appointments

Dr. Son Dinh Phong 🌍🔬 actively contributes to the global scientific community through his extensive research and publications. While specific editorial roles, consultancy projects, or industry collaborations may not be listed, his scholarly work reflects deep engagement in molecular biology and precision medicine. 🧬📖 His ORCID profile further validates his impactful contributions, showcasing his dedication to advancing medical research. 🏥✨ Through collaborations and scientific discourse, Dr. Son continues to push the boundaries of innovation, striving to enhance disease diagnostics and therapeutic strategies. His commitment to research ensures lasting contributions to the ever-evolving field of molecular medicine. 💡🚀

Research Focus

Dr. Son Dinh Phong’s research primarily focuses on cardiovascular diseases 🫀, non-coding RNAs 🧬, and bioinformatics-driven biomarker discovery 🖥️. His work explores circular RNAs (circRNAs) and microRNAs (miRNAs) in coronary heart disease (CHD) 🏥, revealing their role as competing endogenous RNAs (ceRNAs) in gene regulation. Additionally, he investigates serum miRNAs as potential diagnostic biomarkers for various cancers 🎗️ and employs computational approaches 🔬 to identify key regulatory networks in diseases like latent tuberculosis 🦠. His studies integrate molecular biology, genomics, and systems biology to advance precision medicine 🎯 and therapeutic innovations 💊 for complex diseases.

Publication Top Notes