Chen Xie | Gene Therapy | Best Researcher Award
Assoc. Prof. Dr. Chen Xie, Medical Research Center, the Eighth Affiliated Hospital of Sun Yat-sen University, China
Assoc. Prof. Dr. Chen Xie is a distinguished researcher at the Medical Research Center, Eighth Affiliated Hospital of Sun Yat-Sen University. With a Ph.D. in Biochemical Engineering from Huaqiao University and postdoctoral experience in genetics at Sun Yat-Sen University, his work focuses on inflammation, DNA damage, senescence, and noncoding RNAs. 🧬 He has published eight impactful papers in journals such as Signal Transduct Target Ther, Mol Cell, and Cancer Immunol Res and holds an H-index of 9. 🧪 Dr. Xie is a recipient of multiple national honors and leads NSFC-funded research advancing disease-related molecular mechanisms.
Publication Profile
Education
Assoc. Prof. Dr. Chen Xie is a dedicated researcher with a strong background in biochemical and genetic sciences. He began his academic journey with a Bachelor’s degree in Bioengineering from Huaqiao University 🎓 (2007–2011), followed by a Master’s in Genetics from Sun Yat-Sen University 🔬 (2011–2014). He earned his Ph.D. in Biochemical Engineering in 2018 🧪. Dr. Xie completed a postdoctoral fellowship at Sun Yat-Sen University (2018–2021), and then served as Assistant Professor (2021–2025). Since March 2025, he has been an Associate Professor at the Medical Research Center, Eighth Affiliated Hospital of Sun Yat-Sen University 🏥, advancing biomedical research.
Experience
Assoc. Prof. Dr. Chen Xie mainly focuses on exploring the intricate relationship between inflammation, DNA damage, cellular senescence, noncoding RNAs, and human diseases 🧬. His impactful research has earned him prestigious honors such as the National Natural Science Foundation of China award, the National Scholarship 🏅, the First Prize Scholarship of Huaqiao University, and the Alumni Scholarship 🎓. Dr. Xie has published 8 influential papers in top-tier journals including Signal Transduction and Targeted Therapy, Molecular Cell, and Cancer Immunology Research 📚. With an H-index of 9, he continues to contribute significantly to biomedical science 🧫.
Awards
Assoc. Prof. Dr. Chen Xie has received several prestigious awards in recognition of his academic excellence and research contributions 🎓. He was honored with a National Scholarship for his outstanding performance and dedication to scientific advancement. During his studies at Huaqiao University, he earned the First Prize Scholarship 🥇, highlighting his exceptional academic achievements. Additionally, he received an Alumni Scholarship, reflecting the strong support and recognition from his academic community 🌟. These accolades underscore Dr. Xie’s commitment to excellence in the fields of biochemical engineering, genetics, and biomedical research 🔬.
Research Focus
Assoc. Prof. Dr. Chen Xie is a leading researcher in the fields of molecular biology, epigenetics, and cellular senescence, with a strong emphasis on mechanisms of vascular and pulmonary aging, DNA damage repair, and RNA modifications (e.g., m6A). 🧬 His work uncovers how factors like GATA6, YTHDC1, and FTO regulate aging, fibrosis, cancer, and immune responses, often via intricate signaling pathways and RNA interactions. 🧠🧫 He contributes significantly to understanding vascular calcification, fibrosis, and glioma biology, advancing targeted therapies. His research bridges cellular aging and precision medicine, making a profound impact on age-related and inflammatory diseases.
Publication Top Notes
The transcription factor GATA6 accelerates vascular smooth muscle cell senescence-related arterial calcification by counteracting the role of anti-aging factor SIRT6 and impeding DNA damage repair
YTHDC1 delays cellular senescence and pulmonary fibrosis by activating ATR in an m6A-independent manner
UBQLN1 deficiency mediates telomere shortening and IPF through interacting with RPA1
Data from FTO Inhibition Enhances the Antitumor Effect of Temozolomide by Targeting MYC-miR-155/23a Cluster-MXI1 Feedback Circuit in Glioma
Supplementary Data from FTO Inhibition Enhances the Antitumor Effect of Temozolomide by Targeting MYC-miR-155/23a Cluster-MXI1 Feedback Circuit in Glioma
cGAS guards against chromosome end-to-end fusions during mitosis and facilitates replicative senescence
Therapeutic potential of C1632 by inhibition of SARS-CoV-2 replication and viral-induced inflammation through upregulating let-7