Zhen Jin | Drug Delivery Systems | Best Researcher Award

Dr. Zhen Jin | Drug Delivery Systems | Best Researcher Award

Assistant Professor at Xinxiang Medical University | China

Dr. Zhen Jin is a distinguished researcher specializing in nanomedicine, controlled drug delivery, and medical micro-nano robots. He completed doctoral and postdoctoral research at the Medical Robotics Research Institute of Chonnam National University, South Korea, before joining Xinxiang Medical College. His innovative work integrates nanodrug design, advanced therapeutic delivery systems, and cancer diagnostics. With more than 30 SCI-indexed publications, including numerous first-author papers, and four granted national invention patents, his contributions continue to influence biomedical science. His pioneering developments in imaging-guided therapy and synergistic nanocomposites highlight his commitment to advancing cancer treatment and medical robotics research globally.

Publication Profile 

Google Scholar

Education 

Dr. Zhen Jin pursued his doctoral degree at the Medical Robotics Research Institute, Chonnam National University, South Korea, where he also completed postdoctoral research. His academic journey provided a strong foundation in interdisciplinary biomedical engineering, robotics, and nanomedicine. During this period, he engaged in multiple national-level projects, honing expertise in medical micro-nano systems and cancer therapy. This rigorous academic training prepared him to advance research in nanodrugs, controlled drug delivery, and medical robotics. Following this, he transitioned to Xinxiang Medical College, where he integrated his educational background into teaching and research to foster innovation in biomedical sciences.

Experience

Dr. Zhen Jin has extensive research and academic experience, beginning with his doctoral and postdoctoral tenure in South Korea, where he contributed to significant national key projects. His expertise spans nanodrug design, micro-nano robotics, and advanced cancer diagnosis and treatment technologies. Currently, he is a faculty member at Xinxiang Medical College, where he leads cutting-edge projects funded by Henan Province. He has successfully published more than 30 SCI papers, authored key innovations, and secured national invention patents. His experience bridges academia and applied research, positioning him as a leader in biomedical nanotechnology and precision therapeutic development.

Awards and Honors

Dr. Zhen Jin has received recognition for his outstanding contributions to biomedical science, particularly in the fields of nanomedicine and cancer therapy. He has successfully participated in national research projects in South Korea and led provincial-level science and technology projects in China. His impactful research has earned him four national invention patents and numerous publications in high-impact SCI journals. His citation index reflects his growing influence in scientific communities, with an h-index of 21. These honors underscore his position as a promising and innovative researcher, making him a strong candidate for the Best Researcher Award.

Research Focus

Dr. Zhen Jin’s research focuses on nanomedicine, controlled drug delivery systems, and micro-nano robotic platforms for cancer therapy. He has developed multifunctional nanocomposites that combine therapeutic delivery with imaging capabilities for precise diagnosis and treatment. His work on DOX-HSP ananotheranostics exemplifies his focus, showcasing biocompatibility, controlled drug release, and imaging-guided multimodal therapy. By integrating photothermal and chemotherapeutic effects, his studies demonstrate enhanced anti-tumor efficacy. His pioneering approach seeks to overcome challenges of premature drug release and tumor-specific targeting, positioning his research at the forefront of personalized medicine, cancer diagnostics, and next-generation biomedical technologies.

Publication Top Notes

Human adipose–derived mesenchymal stem cell–based medical microrobot system for knee cartilage regeneration in vivo

Hybrid-actuating macrophage-based microrobots for active cancer therapy

A magnetically guided self‐rolled microrobot for targeted drug delivery, real‐time X‐Ray imaging, and microrobot retrieval

A thermo-electromagnetically actuated microrobot for the targeted transport of therapeutic agents

A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair

Multifunctional nanorobot system for active therapeutic delivery and synergistic chemo-photothermal therapy

A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor‐targeting therapy

A soft-magnet-based drug-delivery module for active locomotive intestinal capsule endoscopy using an electromagnetic actuation system

High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose membrane

Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy

Ecofriendly high-performance ionic soft actuators based on graphene-mediated cellulose acetate

Preparation of HIFU-triggered tumor-targeted hyaluronic acid micelles for controlled drug release and enhanced cellular uptake

Feasibility study of dual-targeting paclitaxel-loaded magnetic liposomes using electromagnetic actuation and macrophages

Shape memory alloy–based biopsy device for active locomotive intestinal capsule endoscope

Conclusion

Dr. Zhen Jin pioneering contributions in nanomedicine, micro-nano robots, and controlled drug delivery make him a highly deserving candidate for the Best Researcher Award. His combination of innovative patents, high-impact publications, and cutting-edge theranostic development reflects exceptional promise for shaping the future of biomedical science. With continued emphasis on clinical translation and international engagement, his work is poised to leave a transformative mark on cancer diagnosis and therapy.

Luisa De Cola | Drug Delivery Systems | Best Researcher Award

Luisa De Cola | Drug Delivery Systems | Best Researcher Award

Prof Luisa De Cola, University of Milan and Mario Negri Institute, Italy

Prof. Luisa De Cola is an accomplished chemist known for her interdisciplinary research in supramolecular and materials chemistry, with applications in biomedical fields. She holds a Laurea in Chemistry from the University of Messina and has held prestigious positions at institutions like the University of Amsterdam, University of Münster, and University of Strasbourg. Currently, she is a Full Professor at the University of Milan and Director of the “Materials for Health” unit at Istituto Mario Negri, Milan. With over 400 published papers and 42 patents, she has received numerous awards, including the 2020 Gold Medal “Giulio Natta” and 2014 Chevalier de la Légion d’Honneur. 🏅🔬💡

Publication Profile

Google Scholar

Education

Prof. Luisa De Cola, a renowned scientist, earned her Laurea in Chemistry from the University of Messina in 1983. She has held various prestigious academic roles, including Post-doctoral Fellow at Virginia Commonwealth University, and visiting scientist positions at UCLA, Harvard, and MIT. From 1986 to 1990, she worked as a researcher at the National Research Council in Bologna. She later served as a Full Professor at the University of Amsterdam, University of Münster, and University of Strasbourg. Currently, she is a Full Professor at the University of Milan and Director of the “Materials for Health” unit at the Mario Negri Institute. 🧪🔬🌍

Experience

Prof. Luisa De Cola is a renowned academic and researcher currently serving as a Full Professor at the University of Milan, Italy, since 2020. She is also the Director of the “Materials for Health” unit at Istituto di Ricerche Farmacologiche Mario Negri in Milan. Her distinguished career includes previous roles at prestigious institutions such as the University of Amsterdam, University of Münster, and University of Strasbourg. Prof. De Cola has held notable positions, including chairing molecular photonic materials and nanoelectronics. Her research contributions span nanoelectronics, nanophotonics, and biomaterials. 🌍📚🔬👩‍🔬

Research achievements

Prof. Luisa De Cola’s research is known for its multidisciplinary approach, driven by curiosity and fundamental exploration, often with practical applications. Her work spans supramolecular and material chemistry, focusing on functional luminescent and electro-luminescent assemblies, optical and electroluminescent devices, and dynamic (breakable) materials for biomedical applications. With over 400 published papers in peer-reviewed journals (H-index = 88, over 27,000 citations on Scopus), her research has been featured in prestigious journals like Nature and Nature Chemistry. Her contributions continue to shape innovations in materials science and biomedicine. 🌟🧪🔬📚💡💉

Peer recognition

Prof. Luisa De Cola is a distinguished chemist, awarded numerous prestigious prizes throughout her career. Her accolades include the 1993 Chemistry Prize from the Accademia di Scienze Fisiche e Matematiche di Napoli, the 1995 Federchimica National Prize, and the 2009 European Research Council Advanced Grant Award (Magic). In 2011, she received the IUPAC Prize for distinguished women in chemistry, followed by the 2014 Chevalier de la Légion d’Honneur. Other honors include the 2019 Izatt–Christensen Award, 2020 Giulio Natta Gold Medal, and the 2024 Centenary Prize for Chemistry and Communication. She is also an Honorary Professor at Tianjin University and a Doctor Honoris Causa from Universidad Internacional Menéndez Pelayo. 🏆🔬🎖️🌟

Research Focus

Prof. Luisa De Cola’s research focuses on advanced materials, particularly in the development of luminescent and electrochemical systems for various applications. Her work involves the synthesis and characterization of ruthenium and osmium complexes, often in multi-component systems, exploring their electrochemical behavior, absorption spectra, and photoinduced processes. She investigates biomimetic self-assembly for imaging applications, the creation of highly luminescent lanthanide complexes, and photoinduced energy and electron transfer in dinuclear complexes. Her studies have applications in photonic devices, electroluminescence, and molecular imaging. Her work intersects chemistry, material science, and biological applications. 🔬💡🔋✨

Publication Top Notes

Ruthenium (II) and osmium (II) bis (terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and …

Controlling and imaging biomimetic self-assembly

White‐light emission from an assembly comprising luminescent iridium and europium complexes

Highly luminescent, triple-and quadruple-stranded, dinuclear Eu, Nd, and Sm (III) lanthanide complexes based on bis-diketonate ligands

When self-assembly meets biology: luminescent platinum complexes for imaging applications

Photoinduced energy and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes

Electroluminescent device with reversible switching between red and green emission