Khaydar Yunusov | Drug Discovery and Development | Best Researcher Award

Khaydar Yunusov | Drug Discovery and Development | Best Researcher Award

Prof. Khaydar Yunusov at Institute of Polymer Chemistry and Physics Uzbekistan Academy of Sciences, Uzbekistan.

Prof. Khaydar Yunusov is a distinguished polymer chemist from Uzbekistan with extensive expertise in nanotechnology, cellulose chemistry, and biomaterials. Since 2007, he has held key research and leadership roles at the Institute of Polymer Chemistry and Physics, contributing significantly to polymer-based biomedical innovations. šŸ’Š He holds a Doctor of Science and leads groundbreaking projects on nanostructured antibacterial films, antiviral eye medications, and burn treatments. šŸ“˜ With several patents, international collaborations šŸŒ, and editorial roles in leading journals, Prof. Yunusov is a pioneering force in sustainable polymer research and nanomedical applications.

Publication ProfileĀ 

Orcid

Education

Prof. Khaydar Yunusov began his academic journey at the Tashkent Chemical Technological Institute, earning a Bachelor’s degree in Chemistry (2006) and a Master’s in Cellulose, Paper Chemistry, and Technology (2008). šŸ“˜ Driven by scientific excellence, he pursued a Doctor of Science in Technical Sciences (2009–2016), focusing on advanced polymer research. Since 2018, he has served as a Senior Scientific Researcher in Nanochemistry, Nanophysics, and Nanotechnology. 🧪 His research delves into nanostructured bactericidal preparations based on cellulose and its derivatives, emphasizing synthesis, properties, and production technologies. 🧬 His academic background provides a solid foundation for pioneering innovations in polymer science.

Experience

Prof. Khaydar Yunusov has cultivated a rich professional career in polymer science, beginning in 2007 as a researcher at the Institute of Polymer Chemistry and Physics, Uzbek Academy of Sciences, Tashkent. šŸ“ Over the years, he advanced through roles including junior researcher, senior researcher, and project manager, earning his Doctor of Science along the way. šŸ”¬ His expertise spans polymer and cellulose chemistry, nanotechnology, and biomaterials. From 2019 to 2023, he served as a lab and project manager, driving innovation in nanostructured materials. šŸ’¼ Prof. Yunusov’s professional path reflects unwavering dedication to scientific discovery and technological advancement.

Research FocusĀ 

Prof. Khaydar Yunusov is a pioneering scientist whose research spans polymer chemistry, cellulose technology, and nanochemistry. His core focus lies in designing biocompatible nanomaterials 🧫 such as nanostructured drug delivery systems, microneedles, hydrogels, and functional films for medical applications šŸŽÆ. He actively explores biodegradable polymers, nanoparticle synthesis (silver, selenium, zinc oxide), and antimicrobial and anticancer therapies šŸ’Š. His work intersects biotechnology, materials science, and pharmaceutical engineering, advancing targeted treatments and regenerative medicine 🧠🦠. With numerous high-impact publications, Prof. Yunusov is shaping the future of smart biomaterials and sustainable polymeric solutions.

Publication Top Notes

  • A red cell membrane-camouflaged nanoreactor for enhanced starvation/chemodynamic/ion interference therapy for breast cancer
  • A three-dimensional printable conductive composite dressing for accelerating wound healing under electrical stimulation
  • Core-shell structured microneedles with programmed drug release functions for prolonged hyperuricemia management ( vol 12, pg 1064, 2024)
  • Fabrication of hollow microneedles with double-layer shell structure for rapid and prolonged local anesthesia
  • Homemade isothermal amplification-initiated Cas14a assay for rapid quantitative detection of aquatic RNA virus gene with no PAM
  • Iontophoresis-driven transdermal drug delivery system based on porous microneedles for hyperuricemia treatment
  • Real-time microbial growth curve (RMGC) system: an improved microplate reader with a graphical interface for automatic and high-throughput monitoring of microbial growth curves
  • Two-directions mechanical strength and high-barrier mechanisms of cellulose nanocrystal- based hybrids reinforced packaging with nacre-mimetic structure
  • Physico-chemical characteristics of dialdehyde carboxymethylcellulose/sericin graft copolymer
  • Synthesis, Characterization, and Cytotoxic Activity of Stable Selenium Nanoparticles‐Incorporated Carboxymethylcellulose Solution
  • Impact of cellulose supramolecular structure on its carboxymethylation reaction activity
  • Advances in the formation and properties of nanofiber biomaterials from polyvinyl alcohol/carboxymethylcellulose/nanosilver systems for medical applications
  • Obtaining Dialdehyde Carboxymethylcellulose Through Microwave Treatment
  • Core-shell structured microneedles with programmed drug release functions for prolonged hyperuricemia management

Dr. Rahim Dehghan|Pharmaceutical Biotechnology| Best Researcher Award

Dr. Rahim Dehghan|Pharmaceutical Biotechnology |Best Researcher Award|

Dr. Rahim Dehghan at mus alparslan university, Turkeys

PROFILEĀ Ā 

scopus

Google Sholar

 

Early Academic Pursuits šŸŽ“

Rahim Dehghan embarked on his academic journey in the field of polymer engineering at Shiraz University, where he earned his bachelor’s degree in 2011. Driven by a deep curiosity and passion for polymer science, he pursued a master’s degree in polymer engineering at Yazd University, completing it in 2015. His master’s thesis was a significant exploration of blood-compatible membranes, a topic that laid the foundation for his future research endeavors. This period of academic training provided him with a robust understanding of polymer materials and their applications in biomedical engineering, particularly in the development of membranes for medical use.

Professional Endeavors and Research Focus 🧪

Dehghan’s professional career has been marked by a series of research positions and projects that have focused on the development and enhancement of synthetic membranes for biomedical applications. In 2016, he commenced his Ph.D. at the prestigious Iran Polymer and Petrochemical Institute, a leading center for polymer education in Iran. His doctoral research was centered on developing membranes for the separation of low-density lipoprotein (LDL), commonly known as bad cholesterol, from blood plasma. This work was groundbreaking, as it addressed critical challenges in blood purification technologies, aiming to improve the efficiency and efficacy of these processes.

During his Ph.D. studies, Dehghan worked on several key aspects of membrane engineering, including pore size optimization, morphology control, and enhancing membrane permeability. His innovative approach to membrane structural engineering was aimed at achieving high-performance membranes capable of selective separation of LDL from blood plasma, while ensuring high plasma permeability. His research contributions during this period culminated in a Ph.D. degree, awarded in 2022 with an excellent grade, reflecting the significance and quality of his work.

Contributions and Research Focus šŸŒ

Dehghan’s research has had a profound impact on the field of membrane science, particularly in the development of membranes for biomedical applications. His work on LDL separation has opened new avenues for research in blood purification technologies, with potential applications in treating cardiovascular diseases and other conditions where blood purification is critical. He has also contributed to the field of microfiltration membranes for plasmapheresis, a process used to separate plasma from blood cells. His recent work has successfully developed a microfiltration membrane capable of simultaneously separating LDL and blood cells from whole blood, a significant advancement in this area.

In addition to his academic research, Dehghan has played a crucial role in the industrial application of his findings. As a researcher at the Iranian Polymer and Petrochemical Institute and a senior researcher at D.G.DENA Co., he has applied his expertise to the development of biomedical devices, including hydrogels and gels for wound care. His work in these roles has involved the application of advanced polymer science to address real-world challenges in medical device manufacturing.

Accolades and Recognition šŸ†

Throughout his academic and professional career, Dehghan has received numerous accolades that highlight his contributions to the field of polymer engineering. One of his early achievements was acquiring the 8th rank in the national Ph.D. entrance exam in Iran in 2016, a highly competitive examination with over 400 participants. This accomplishment not only earned him a prestigious scientific award but also set the stage for his successful academic career.

His research has been widely recognized and published in several leading international journals, including the Journal of Membrane Science and Separation and Purification Technology. These publications have not only disseminated his findings to the broader scientific community but have also established him as a leading researcher in the field of polymer-based membrane technologies.

Impact and Influence 🌟

Dehghan’s work has had a significant impact on both the academic and industrial sectors. His research on membrane technologies has provided new insights into the design and development of high-performance membranes for medical applications. These contributions are particularly important in the context of blood purification technologies, where efficient and selective separation processes are critical for patient outcomes.

In the industrial sphere, his work as a consultant and researcher has directly influenced the development of new medical devices, particularly in the area of wound care. His expertise in polymer science has been instrumental in advancing the capabilities of these devices, ensuring they meet the stringent requirements of biomedical applications.

Legacy and Future Contributions 🌠

Looking ahead, Rahim Dehghan’s contributions to the field of polymer engineering and membrane science are poised to leave a lasting legacy. His work has already set new standards for the development of synthetic membranes, particularly in the biomedical field. As he continues to explore new research opportunities, particularly in the field of blood purification membranes such as hemodialysis and hemodiafiltration, his impact on the field is expected to grow.

šŸŽ“PublicationĀ 

Dextran sulfate bulk and surface-modified microfiltration membrane for simultaneous blood plasma harvesting and low-density lipoprotein removal during plasmapheresis

  • AuthorsĀ  Ā :Dehghan, R., Barzin, J., Carbonell, R.G., Ghaderi Jafarbeigloo, H., Kordkatooli, Z.
  • JournalĀ  Ā  :Journal of Membrane Science
  • YearĀ  Ā  Ā  Ā  Ā :2024

Evaluation of solubility parameters and relative energy difference (RED) on the preparation of polysulfone/polyethylene glycol membrane: A study on the casting solution and coagulation bath

Membrane patterning through horizontally aligned microchannels developed by sulfated chopped carbon fiber for facile permeability of blood plasma components in low-density lipoprotein apheresis

High cut-off membrane: evaluation of pore collapse and the synergistic effect of low and high molecular weight polyvinylpyrrolidone

Low density lipoprotein (LDL) apheresis from blood plasma via anti-biofouling tuned membrane incorporated with graphene oxide-modified carrageenan