Saikat Chaudhuri | Drug Discovery and Development | Best Researcher Award

Saikat Chaudhuri | Drug Discovery and Development | Best Researcher Award

Assist. Prof. Dr. Saikat Chaudhuri at CSIR-Central Leather Research Institute, India.

Assist. Prof. Dr. Saikat Chaudhuri is an accomplished organic chemist specializing in natural product synthesis and green chemistry. 🎓 He earned his Ph.D. from IISER Bhopal, focusing on Clavine alkaloids, and holds degrees from Visva Bharati and Burdwan Universities. 🏅 He is a recipient of the Young Scientist Award (2024) and prestigious UGC fellowships. At CSIR-CLRI, he teaches and mentors students across disciplines, guiding numerous projects and theses. 📚 His innovative research, backed by major grants, has led to impactful publications in synthesis and catalysis. 🧪 His work fuels advancements in affordable pharmaceutical chemistry and sustainable methodologies.

Publication Profile 

Orcid

Education

Assist. Prof. Dr. Saikat Chaudhuri holds an impressive academic background in organic chemistry. He completed his Ph.D. in Organic Chemistry from IISER Bhopal (2013–2017) under the mentorship of Prof. Alakesh Bisai, focusing on the total syntheses of naturally occurring Clavine alkaloids 🧪. Prior to this, he earned his M.Sc. in Organic Chemistry from Visva Bharati University (2010–2012) 📘 and a B.Sc. (Hons.) in Chemistry from Burdwan University (2007–2010) 🔬. His strong academic foundation laid the groundwork for his research excellence and innovative contributions to synthetic organic chemistry and drug development.

Awards

Assist. Prof. Dr. Saikat Chaudhuri has been recognized with several prestigious honors throughout his academic journey. In 2024, he received the Young Scientist Award from the CRS Society, Vidyasagar University 🌟. Earlier, he was awarded the esteemed Dr. D.S. Kothari Postdoctoral Fellowship (2019–2021) by UGC, Government of India 🧪. During his doctoral research, he was a recipient of both Junior Research Fellowship (JRF) and Senior Research Fellowship (SRF) from UGC-NET (2013–2017) 📚. His early promise was evident when he earned the Swami Vivekananda Merit-cum-Means Scholarship (2011–2012) from the Govt. of West Bengal.

Research Focus 

Assist. Prof. Dr. Saikat Chaudhuri is a rising expert in synthetic organic chemistry and medicinal chemistry. His research focuses on the development of novel synthetic methodologies 🧪 for constructing complex heterocycles, such as indoles, benzazepinoindoles, and spiro compounds 🌱. These molecules show promising biological activity, including antibacterial and antifungal properties 💊🦠. He also explores green chemistry approaches, metal-free catalysis, and the total synthesis of natural products 🌍. His work significantly contributes to drug discovery and design, making him a valuable contributor to pharmaceutical research and sustainable chemistry.

Publication Top Notes

  • Synthesis of Dihydro‐benzazepinoindoles via an Oxidative Pictet–Spengler Reaction
  • A New Homogeneous Catalyst for the Synthesis of 3,3′‐Bis(indolyl)methanes: Collective Synthesis of Arundine, Turbomycin B, Arsindoline A, and Tris(1H‐Indol‐3‐yl)methane*
  • A Transition Metal‐Free Strategy for Dihydrobenzazepinoindole via KI‐Mediated Oxidative Pictet–Spengler Reaction
  • Pentafluorophenol‐Catalyzed Metal‐Free Fischer Indole Synthesis: A Novel Approach to Carbazole Derivatives and Desbromoarborescidine A*
  • Water Mediated Chemoselective Synthesis of Novel Spiro Benzoxazinoindoline and Extended Synthesis of Spiro Benzoxazinoindene Derivatives*
  • A Practical and Metal‐Free Approach Towards Synthesis of Spiro‐Benzazepinoindole Derivatives via Pentafluorophenol Catalyzed Pictet‐Spengler Reaction**
  • Efficient, One‐Pot, Green Syntheses of Analogues of 3,4‐Dihydro‐2H Pyrroles as Potential New Antifungal and Antibacterial Agents.
  • A convenient proline catalysed Paal–Knorr synthesis of highly substituted pyrrole: construction of a pyrrolo[2,1-a]isoquinoline scaffold
  • Syntheses of Novel Spirobenzazepinoindole Derivatives via Lewis‐Acid Catalyzed Pictet‐Spengler Cyclization
  • Self-Healable Hydrogels from Vegetable Oil: Preparation, Mechanism, and Applications
  • A Comprehensive Review of Synthetic Approaches Toward Lamellarin D and its Analogous
  • Catalytic Asymmetric Approach to the Naturally Occurring Clavine Alkaloid, (+)-Lysergine
  • Harnessing leather waste in polymer matrix for sustainable smart <scp>shape‐stable</scp> phase change materials
  • Green synthetic approaches for medium ring-sized heterocycles of biological and pharmaceutical interest

Natalia Marina CARDILLO | Drug Discovery and Development | Best Researcher Award

Natalia Marina CARDILLO | Drug Discovery and Development | Best Researcher Award

Dr. Natalia Marina CARDILLO, USDA-ARS-WSU, United States

Dr. Natalia Marina Cardillo is a distinguished veterinary scientist from Argentina with a Ph.D. in Veterinary Sciences, specializing in parasitology and public health 🧫. Currently a Postdoctoral Research Associate at Washington State University 🇺🇸, she focuses on chemotherapeutic strategies for bovine babesiosis. With over two decades of academic and research excellence across UBA, CONICET, INTA, and USDA, she has led groundbreaking projects on zoonoses, antiparasitic drug resistance, and diagnostics. 🧬 Her contributions span teaching, diagnostics, and pharmaceutical clinical trials in veterinary medicine, earning her global recognition and prestigious fellowships.

Publication Profile

Google Scholar

Education

Dr. Natalia Marina Cardillo began her academic path with a Doctor of Veterinary Medicine degree (1997–2004) from the Universidad de Buenos Aires, Argentina, specializing in Public Health 🐕‍🦺🩺. She furthered her expertise by completing a Ph.D. in Veterinary Sciences with a focus on Parasitology and Public Health (2006–2012), earning the prestigious “summa cum laude” distinction for her thesis on Toxocara cati in murine models 🧬🧫. To complement her academic and research proficiency, she pursued a University Teaching Major in Veterinary and Biological Sciences (2014–2016), strengthening her role as an educator and mentor 📚👩‍🏫.

Experience

Dr. Natalia Marina Cardillo has led a distinguished career in parasitology, veterinary microbiology, and public health. Currently a Postdoctoral Research Associate at Washington State University 🐄💊, she focuses on developing novel treatments for bovine babesiosis. Previously, she served as Senior and Principal Scientist at CONICET-INTA 🇦🇷, leading studies on zoonotic parasitic diseases. With over two decades of academic roles at the Universidad de Buenos Aires 👩‍🏫🧫, she also contributed significantly to diagnostics, laboratory accreditation, and veterinary clinical trials. As founder of ALIANZA InVet 🧬🐕, she has pioneered ethical animal research and advanced pharmaceutical testing across Argentina.

Awards

Dr. Natalia Marina Cardillo has received numerous prestigious honors throughout her career. From 2023 to 2025, she was awarded a competitive Postdoctoral Fellowship by the USDA at Washington State University 🇺🇸🔬. In 2018, she won the NAVES entrepreneurship competition by Universidad Austral’s IAE Business School for her CRO-VET project 🏅💼. Her academic excellence was recognized early with a Ph.D. fellowship (2005–2010) in Public Health Veterinary Medicine and a Scientific Research Scholarship (2000–2002) in Parasitology at Universidad de Buenos Aires 🇦🇷📘—highlighting her dedication to veterinary science and innovation.

Research Focus

Dr. Natalia Marina Cardillo’s research is rooted in veterinary parasitology, with a strong emphasis on zoonotic diseases, public health, and epidemiology 🐛🧫🌍. Her work investigates parasites like Toxocara cati, Trichinella spp., and Aelurostrongylus abstrusus, exploring their life cycles, transmission, and pathology in animal hosts and their public health implications 💉📊. She also focuses on developing chemotherapeutic treatments for diseases such as bovine babesiosis, integrating pharmacology, immunology, and molecular diagnostics 🧬💊. Her interdisciplinary research contributes significantly to One Health, bridging human, animal, and environmental health.