Lorena Garcia Hevia | Drug Delivery Systems | Best Researcher Award

Dr. Lorena Garcia Hevia | Drug Delivery Systems | Best Researcher Award

Universidade de Vigo | Spain

Dr. Lorena García Hevia is a distinguished researcher recognized for her pioneering work at the intersection of nanomedicine, microbiology, and biotechnology. As a member of the Hybrid Nanomaterials Research Group at the Galicia Sur Health Research Institute (IIS Galicia Sur), she has dedicated her career to advancing innovative nanotechnological solutions that address critical biomedical challenges. Her research focuses primarily on the design and application of nanoscale systems to improve therapeutic delivery, particularly within the context of infectious disease management and antimicrobial resistance.Affiliated with the CINBIO (Biomedical Research Center) and the Universidade de Vigo in Spain, Dr. García Hevia brings an interdisciplinary approach that bridges biochemical, genetic, and immunological insights with advanced materials science. Her scientific vision emphasizes the development of intelligent nanocarriers that enhance drug stability, optimize bioavailability, and enable targeted therapy. Through this approach, she contributes to transforming conventional treatments into highly efficient, patient-specific solutions.In her recent publication Nanomedicine for Phage Therapy: Encapsulation Strategies for Enhanced Antimicrobial Efficacy, Dr. García Hevia and her colleagues explore the integration of nanotechnology with bacteriophage therapy to overcome limitations in traditional antimicrobial strategies. Her work demonstrates how encapsulation methods—such as polymeric nanoparticles, liposomes, hydrogels, and nanofibers—can significantly improve the stability, delivery, and therapeutic impact of bacteriophages. These innovative formulations facilitate localized and sustained release, providing powerful alternatives against multidrug-resistant infections.Dr. García Hevia’s research is marked by creativity, precision, and translational relevance. Her investigations into responsive nanocarriers and inorganic nanoparticles have opened new avenues for targeted phage delivery, aligning with global efforts to combat antibiotic resistance through sustainable and effective biotechnological interventions. Beyond her scientific achievements, she is deeply engaged in academic mentorship and collaborative research initiatives that strengthen the connection between laboratory innovation and clinical application.Her contributions continue to shape the evolving field of nanomedicine, positioning her as a leading figure in the development of next-generation antimicrobial therapies. Through her commitment to excellence and scientific innovation, Dr. Lorena García Hevia exemplifies the transformative potential of nanotechnology in redefining the future of infection control and precision therapeutics.

Profile: Google Scholar

Featured Publications

García‐Hevia, L., Bañobre‐López, M., & Gallo, J. (2019). Recent progress on manganese‐based nanostructures as responsive MRI contrast agents. Chemistry–A European Journal, 25(2), 431–441.

García-Hevia, L., Valiente, R., Martín-Rodríguez, R., Renero-Lecuna, C., et al. (2016). Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis. Nanoscale, 8(21), 10963–10973.

Rodrigues, R. O., Baldi, G., Doumett, S., García-Hevia, L., Gallo, J., et al. (2018). Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Materials Science and Engineering: C, 93, 206–217.

García‐Hevia, L., Villegas, J. C., Fernández, F., Casafont, Í., González, J., et al. (2016). Multiwalled carbon nanotubes inhibit tumor progression in a mouse model. Advanced Healthcare Materials, 5(9), 1080–1087.

García-Hevia, L., Casafont, I., Oliveira, J., Terán, N., Fanarraga, M. L., & Gallo, J. (2022). Magnetic lipid nanovehicles synergize the controlled thermal release of chemotherapeutics with magnetic ablation while enabling non-invasive monitoring by MRI for melanoma. Bioactive Materials, 8, 153–164.

Zefeng Lai | Drug Delivery Systems | Excellence in Pharmaceutical Innovation Award

Prof. Dr. Zefeng Lai | Drug Delivery Systems | Excellence in Pharmaceutical Innovation Award

Guangxi Medical University | China

Prof. Dr. Zefeng Lai is a leading figure in the field of pharmaceutical science, recognized for his pioneering work in nanomedicine, drug delivery, and nanotoxicology. He serves as a Professor of Pharmaceutical Science at the School of Pharmacy, Guangxi Medical University, Nanning, China, where he has made outstanding contributions to biomedical research and academic development. Having earned his BSc and PhD from the State Key Laboratory of Crystal Materials, Shandong University, and completed postdoctoral research in Drug Delivery and Biomedical Effects of Nanomaterials, Dr. Lai’s expertise integrates material chemistry with pharmacological innovation to enhance therapeutic outcomes.His research explores the mechanisms and biomedical applications of carbon-based nanodrug carriers, focusing on their transcytosis, biodistribution, and immunological effects. He has led multiple high-impact national and provincial projects, including investigations into mesona chinensis polysaccharides, fibrinolytic enzymes from marine sources, and liver-targeted nanocarriers. His work on the biotoxicity of carboxylated single-walled carbon nanotubes using zebrafish and mammalian models has been particularly influential, advancing the global understanding of nanomaterial safety in pharmaceutical formulations.Prof. Lai’s scholarly influence is reflected in his strong research metrics, with 293 citations across 279 documents, based on 19 published papers, and an impressive h-index of 10, demonstrating his consistent impact and the recognition of his contributions by the global scientific community.His groundbreaking publications demonstrate his multidisciplinary research vision. His paper Photothermal Therapeutic Gold Nanoparticles Loaded with PD-L1 siRNA Enhanced Killing of NSCLC Cells by Immune Cells presents a novel nanoplatform integrating photothermal therapy and immunomodulation for non-small cell lung cancer treatment. His work Immunogenic Nano-Phthalocyanine Enables Oxygen-Economic Photodynamic Therapy for Hepatocellular Carcinoma introduces a new generation of oxygen-efficient nanotherapeutics for liver cancer. Other notable studies include Effect of Carboxylated Single-Walled Carbon Nanotubes on the Development and Morphology of Zebrafish Embryos, High Throughput CircRNA Sequencing Analysis Reveals Novel Insights into the Mechanism of Nitidine Chloride against Hepatocellular Carcinoma, and Toxic Effect of Long-Term Intravenous Injection of Carboxylated Single-Walled Carbon Nanotubes on Kidney in Rats. His research on Nitidine Chloride Induced Colorectal Cancer HT29 Cells Apoptosis Through the Cytochrome c-Mediated Mitochondrial Pathways and Long-Term Intravenous Administration of Carboxylated Single-Walled Carbon Nanotubes Induces Persistent Accumulation in the Lungs and Pulmonary Fibrosis via the NF-κB Pathway underscores his deep engagement with molecular pharmacology and nanotoxicology.

Profile: Scopus

Featured Publications

Lai, Z., Liu, Y., He, L., Wang, X., Zhang, H., & Zhao, J. (2023). Immunogenic nano-phthalocyanine enables oxygen-economic photodynamic therapy for hepatocellular carcinoma. Biomaterials, 295, 121992.

Ahmad Saeed | Drug Delivery Systems | Best Researcher Award

Mr. Ahmad Saeed | Drug Delivery Systems | Best Researcher Award

University of Education Lahore | Pakistan

Mr. Ahmad Saeed is a dedicated researcher in the field of analytical chemistry with a strong academic and research background. Currently pursuing a Bachelor of Science in Chemistry at the University of Education, Township Campus, Lahore, he has consistently demonstrated academic excellence with a notable CGPA of 3.60. Throughout his academic journey, he has actively participated in multiple research projects, including the development of biodegradable films containing biological macromolecules impregnated with curcumin for food preservation, investigation of the toxic effects of heavy metals in cosmetics on human health, and the advancement of revolutionized electrochemical sensors utilizing 2D materials as sensor electrodes. He has also contributed to innovative environmental projects, such as Clay Eco Filters, aimed at developing metal nanoparticle-impregnated clay tablets for water purification, and Ecofoil, focused on synthesizing biodegradable films for sustainable food packaging solutions.Mr. Ahmad Saeed has enriched his academic experience through hands-on laboratory work as a Graduate Research Assistant, where he worked extensively on projects involving the synthesis of nanomaterials for environmental and analytical applications. As a Teaching Assistant, he contributed to the academic development of students by assisting in atomic spectrophotometry courses, grading assignments, and providing academic guidance. He has participated in major conferences, including the International Conference on Trends and Research in Chemistry and the International Conference on Material Chemistry and Industrial Technologies, serving as both an organizer and a participant, thus gaining exposure to scholarly dialogues and academic networking.His research contributions are reflected in several scholarly publications, including Multivariate Statistical Analysis of Cosmetics Due to Potentially Toxic/Heavy Metal(loid) Contamination: Source Identification for Sustainability and Human Health Risk Assessment published in Sustainability, Structural Development of Curcumin: A Natural Product Arsenal for Diverse Therapeutic Targets – Seizing Opportunities Through Serendipity and Rational Design in the Journal of Molecular Structure, and FDA-Approved Sulfonamides-Containing Molecules: An Insightful Review on the Synthesis Strategy, Medical Indication, and Their Binding Mode under review in Chemistry and Biodiversity. These works highlight his interest in environmental sustainability, analytical chemistry, natural products, and biomedical applications.

Profile: Orcid

Featured Publications

Ahmed, M., Basheer, S., Mughram, M. H. A., Iqbal, D. N., Qamar, S., Saeed, A., Batool, R., Sanaullah, M., Raza, H., & Hussain, R. (2025). Structural development of curcumin: A natural product arsenal for diverse therapeutic targets—Seizing opportunities through serendipity and rational design. Journal of Molecular Structure.

Aslam, A. A., Ahmed, M., Mughram, M. H. A. L., Habib-ur-Rahman Mahmood, M., Basheer, S., Hussain, R., Eiman, E., Sanaullah, M., Raza, H., Saeed, A., et al. (2025). Sulfonamides as a promising scaffold in drug discovery: An insightful review on FDA-approved molecules, synthesis strategy, medical indication, and their binding mode. Chemistry and Biodiversity.

Ahmed, M., Basheer, S., Mughram, M. H. A., Iqbal, D. N., Qamar, S., Saeed, A., Batool, R., Sanaullah, M., Raza, H., & Hussain, R. (2025). Multivariate statistical analysis of cosmetics due to potentially toxic/heavy metal(loid) contamination: Source identification for sustainability and human health risk assessment. Sustainability.

Zhen Jin | Drug Delivery Systems | Best Researcher Award

Dr. Zhen Jin | Drug Delivery Systems | Best Researcher Award

Assistant Professor at Xinxiang Medical University | China

Dr. Zhen Jin is a distinguished researcher specializing in nanomedicine, controlled drug delivery, and medical micro-nano robots. He completed doctoral and postdoctoral research at the Medical Robotics Research Institute of Chonnam National University, South Korea, before joining Xinxiang Medical College. His innovative work integrates nanodrug design, advanced therapeutic delivery systems, and cancer diagnostics. With more than 30 SCI-indexed publications, including numerous first-author papers, and four granted national invention patents, his contributions continue to influence biomedical science. His pioneering developments in imaging-guided therapy and synergistic nanocomposites highlight his commitment to advancing cancer treatment and medical robotics research globally.

Publication Profile 

Google Scholar

Education 

Dr. Zhen Jin pursued his doctoral degree at the Medical Robotics Research Institute, Chonnam National University, South Korea, where he also completed postdoctoral research. His academic journey provided a strong foundation in interdisciplinary biomedical engineering, robotics, and nanomedicine. During this period, he engaged in multiple national-level projects, honing expertise in medical micro-nano systems and cancer therapy. This rigorous academic training prepared him to advance research in nanodrugs, controlled drug delivery, and medical robotics. Following this, he transitioned to Xinxiang Medical College, where he integrated his educational background into teaching and research to foster innovation in biomedical sciences.

Experience

Dr. Zhen Jin has extensive research and academic experience, beginning with his doctoral and postdoctoral tenure in South Korea, where he contributed to significant national key projects. His expertise spans nanodrug design, micro-nano robotics, and advanced cancer diagnosis and treatment technologies. Currently, he is a faculty member at Xinxiang Medical College, where he leads cutting-edge projects funded by Henan Province. He has successfully published more than 30 SCI papers, authored key innovations, and secured national invention patents. His experience bridges academia and applied research, positioning him as a leader in biomedical nanotechnology and precision therapeutic development.

Awards and Honors

Dr. Zhen Jin has received recognition for his outstanding contributions to biomedical science, particularly in the fields of nanomedicine and cancer therapy. He has successfully participated in national research projects in South Korea and led provincial-level science and technology projects in China. His impactful research has earned him four national invention patents and numerous publications in high-impact SCI journals. His citation index reflects his growing influence in scientific communities, with an h-index of 21. These honors underscore his position as a promising and innovative researcher, making him a strong candidate for the Best Researcher Award.

Research Focus

Dr. Zhen Jin’s research focuses on nanomedicine, controlled drug delivery systems, and micro-nano robotic platforms for cancer therapy. He has developed multifunctional nanocomposites that combine therapeutic delivery with imaging capabilities for precise diagnosis and treatment. His work on DOX-HSP ananotheranostics exemplifies his focus, showcasing biocompatibility, controlled drug release, and imaging-guided multimodal therapy. By integrating photothermal and chemotherapeutic effects, his studies demonstrate enhanced anti-tumor efficacy. His pioneering approach seeks to overcome challenges of premature drug release and tumor-specific targeting, positioning his research at the forefront of personalized medicine, cancer diagnostics, and next-generation biomedical technologies.

Publication Top Notes

Human adipose–derived mesenchymal stem cell–based medical microrobot system for knee cartilage regeneration in vivo

Hybrid-actuating macrophage-based microrobots for active cancer therapy

A magnetically guided self‐rolled microrobot for targeted drug delivery, real‐time X‐Ray imaging, and microrobot retrieval

A thermo-electromagnetically actuated microrobot for the targeted transport of therapeutic agents

A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair

Multifunctional nanorobot system for active therapeutic delivery and synergistic chemo-photothermal therapy

A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor‐targeting therapy

A soft-magnet-based drug-delivery module for active locomotive intestinal capsule endoscopy using an electromagnetic actuation system

High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose membrane

Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy

Ecofriendly high-performance ionic soft actuators based on graphene-mediated cellulose acetate

Preparation of HIFU-triggered tumor-targeted hyaluronic acid micelles for controlled drug release and enhanced cellular uptake

Feasibility study of dual-targeting paclitaxel-loaded magnetic liposomes using electromagnetic actuation and macrophages

Shape memory alloy–based biopsy device for active locomotive intestinal capsule endoscope

Conclusion

Dr. Zhen Jin pioneering contributions in nanomedicine, micro-nano robots, and controlled drug delivery make him a highly deserving candidate for the Best Researcher Award. His combination of innovative patents, high-impact publications, and cutting-edge theranostic development reflects exceptional promise for shaping the future of biomedical science. With continued emphasis on clinical translation and international engagement, his work is poised to leave a transformative mark on cancer diagnosis and therapy.

Prof Dr. THAWATCHAI PHAECHAMUD| Drug Delivery Systems | Best Researcher Award-1299

Prof Dr. THAWATCHAI PHAECHAMUD, Drug Delivery Systems ,Best Researcher Award

Prof Dr. THAWATCHAI PHAECHAMUD atSilpakorn University,Thailand

PROFILE  

Google scholar 

Scopus

Orcid

Early Academic Pursuits 🎓

Thawatchai Phaechamud, Mr., embarked on his academic journey at the Faculty of Pharmacy, Silpakorn University, Thailand, where he earned his Bachelor of Pharmacy (B.Pharm) degree in 1991. Demonstrating a strong interest in pharmaceutical sciences from an early stage, he advanced his studies at the Faculty of Pharmaceutical Sciences, Chulalongkorn University. There, he completed his Master of Science (M.Sc.) in Manufacturing Pharmacy in 1995, with a thesis focused on the “Effect of variables in chitosan film on propranolol hydrochloride coated tablets.” His academic journey culminated in a Ph.D. in Pharmaceutics from the same institution in 1999. His doctoral thesis, titled “Film-coating of chitosan onto propranolol hydrochloride tablet: Approach to fast and extended drug release,” laid the foundation for his future contributions to the field of pharmaceutics, particularly in drug delivery systems.

Professional Endeavors 🧑‍🏫

Mr. Phaechamud began his professional career as a Lecturer at the Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, from 1991 to 1993. During this period, he honed his teaching skills and laid the groundwork for a lifelong commitment to academia. From 1994 to 1996, he served as a research student at the Faculty of Pharmaceutical Sciences, Chulalongkorn University, further deepening his research capabilities. His academic prowess earned him a position as a Visiting Scientist at the Department of Pharmaceutics, Toyama Medical & Pharmaceutical University in Japan from November 1997 to January 1998.

Upon completing his Ph.D., Mr. Phaechamud returned to Silpakorn University, where he served as an Assistant Professor from 1999 to 2003 in the Department of Pharmaceutical Technology. His dedication to teaching and research led to his promotion to Associate Professor in 2004, a position he has held ever since. His roles have expanded over the years, including serving as the Head of the Department of Pharmaceutical Technology from 2008 to 2009 and Chairman of the Pharmaceutical Engineering Doctoral Program from 2017 to 2018. Since 2018, Mr. Phaechamud has held the esteemed title of Professor in the Department of Industrial Pharmacy, Faculty of Pharmacy at Silpakorn University.

Contributions and Research Focus 🔬

Mr. Phaechamud’s research interests are diverse, focusing on various aspects of pharmaceutical sciences. His work primarily revolves around controlled drug delivery systems, in situ forming gels, matrix film and tablet characterizations, herbal preparation and development, pharmaceutical film coating, and pharmaceutical excipient characterization. He has made significant contributions to the development of controlled drug delivery systems, a field that aims to enhance the efficacy and safety of medications by controlling the rate, time, and place of drug release.

His expertise in polymeric film characterization and pharmaceutical excipient characterization has been instrumental in advancing the understanding of drug delivery mechanisms. His work on in situ forming gels and matrix films has paved the way for innovative drug delivery solutions, particularly in the treatment of chronic conditions where sustained drug release is crucial.

Accolades and Recognition 🏆

Throughout his illustrious career, Mr. Phaechamud has received numerous accolades and recognition for his contributions to pharmaceutical sciences. In June 2006, he was honored as a TRF Research Scholar by The Thailand Research Fund, a prestigious recognition of his research excellence. His leadership in the “Development of standard extract of SC for pharmaceutical and cosmetic applications” research program at Silpakorn University in 2008-2009 further solidified his reputation as a leading researcher in his field.

His publications in high-impact journals reflect the quality and impact of his research. Notable publications include works in the International Journal of Biological Macromolecules, Polymers, AAPS PharmSciTech, and Pharmaceutics, where his research on topics such as transdermal and periodontal pocket drug delivery systems, in situ gels, and solvent-removal zein-based in situ gels has garnered significant attention.

Impact and Influence 🌍

Mr. Phaechamud’s research has had a profound impact on the field of pharmaceutics, particularly in the area of drug delivery systems. His work on controlled drug delivery systems and in situ forming gels has influenced the development of new therapeutic approaches that improve patient outcomes by ensuring more effective and targeted drug delivery.

His influence extends beyond research; as an educator, he has mentored countless students, many of whom have gone on to become leaders in the pharmaceutical industry and academia. His teachings on modified release solid dosage forms, controlled drug delivery systems, and polymer degradation have been instrumental in shaping the next generation of pharmaceutical scientists.

Legacy and Future Contributions 🌟

Mr. Phaechamud’s legacy is one of innovation, dedication, and excellence in the field of pharmaceutical sciences. His work has not only advanced the understanding of drug delivery mechanisms but also paved the way for new therapeutic solutions that have the potential to improve the lives of millions of patients worldwide.

As he continues his work at Silpakorn University, Mr. Phaechamud is

🎓Publication 

Moist heat treatment on physicochemical change of chitosan salt films

  • Authors   :Garnpimol C Ritthidej, Thawatchai Phaechamud, Tamotsu Koizumi
  • Journal    :International journal of pharmaceutics
  • Year         :2002

Gentamicin sulfate-loaded porous natural rubber films for wound dressing

    • Authors :Thawatchai Phaechamud, Pongsathorn Issarayungyuen, Wiwat Pichayakorn
    • Journal   :International journal of biological macromolecules
    • Year       : 2016

Sustained-release from layered matrix system comprising chitosan and xanthan gum

  • Authors  :Thawatchai Phaechamud, Garnpimol C Ritthidej
  • Journal    :Drug development and industrial pharmacy
  • Year         :  2007

The study of antioxidant capacity in various parts of Areca catechu L.

  • Authors  :Penpun Wetwitayaklung, Thawatchai Phaechamud, Chutima Limmatvapirat, Sindhchai Keokitichai
  • Journal   :Naresuan University Journal: Science and Technology (NUJST)
  • Year        :   2006

Antibacterial activity and drug release of chitosan sponge containing doxycycline hyclate

  • Authors  :Thawatchai Phaechamud, Juree Charoenteeraboon
  • Journal   :Aaps PharmSciTech
  • Year        :  2008