73 / 100 SEO Score

Abdellatif Benraiss | Gene Therapy | Best Researcher Award

Dr. Abdellatif Benraiss, Universiy of Rochester, United States

Dr. Abdellatif Benraiss is a distinguished neuroscientist 🧠 specializing in neurobiology, stem cell research 🌱, and gene therapy 🧬. With academic roots in Morocco 🇲🇦 and France 🇫🇷, he earned his Ph.D. in Neurobiology in 1996. His postdoctoral and faculty work in top institutions like Cornell University 🇺🇸 and the University of Rochester has led to pioneering research in Huntington’s disease 🧩, gene transfer therapies 💉, and adult brain regeneration 🧪. He is an esteemed member of several scientific societies 🌍 and a recipient of prestigious awards, including the 2022 Huntington’s Disease Foundation Research Award 🏆.

Publication Profile

Google Scholar

Education

Dr. Abdellatif Benraiss began his academic journey in Morocco 🇲🇦, earning a B.S. in Animal Biology 🐾 from Cadi Ayyad University in 1990. He continued his studies in France 🇫🇷 at Aix-Marseille II University, receiving a second B.S. in Genetics 🧬 in 1991, an M.S. in Neurobiology 🧠 in 1992, and a Ph.D. in Neurobiology in 1996. Pursuing advanced research, he completed a postdoctoral fellowship in Molecular Neurobiology 🔬 at Cornell University Medical College, New York 🇺🇸 (1997–2002), and earned an HDR degree in Gene Therapy 💉 from René Descartes University, Paris, in 2004.

Awards

Dr. Abdellatif Benraiss has been recognized with numerous prestigious honors for his groundbreaking work in neuroscience and gene therapy 🧠💉. In 2022, he received the Huntington’s Disease Foundation Research Award 🧬. He was awarded the NYSTEM Investigator-Initiated Research Project Award in 2011 🧪. His contributions to neurodegenerative disease research earned him the European Leukodystrophy Association (ELA) Award in both 2004 and 2005 🧠🌍. Earlier, in 2003 and 2004, he received fellowships from the French Muscular Dystrophy Association (AFM) 💪🇫🇷. In 2001, he was honored with the Aging Foundation Award from Cornell Medical School 🏛️📜.

Research Focus

Dr. Abdellatif Benraiss’s research focuses on neuroregeneration, gene therapy, and glial cell biology within the context of neurodegenerative diseases 🧠💉. He has pioneered studies on induced neurogenesis in the adult brain, particularly in Huntington’s disease models 🧬, demonstrating how new neurons and glial cells can slow disease progression. His innovative work in gene transfer technologies using viral vectors has contributed to therapies for disorders like metachromatic leukodystrophy and Alzheimer’s disease 🧪. He also explores glial chimerism, aiming to replace diseased brain cells with healthy ones. His multidisciplinary research bridges stem cell therapy, molecular neuroscience, and regenerative medicine 🧫🧍‍♂️.

Publication Top Notes

In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus

Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain

SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions

Nitric oxide negatively regulates mammalian adult neurogenesis

Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter

Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation

Promoter‐targeted selection and isolation of neural progenitor cells from the adult human ventricular zone

Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal …

Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s …

High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain

Human glia can both induce and rescue aspects of disease phenotype in Huntington disease

Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain

Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease

Neuronal transgene expression in dominant-negative SNARE mice

PDGF-B is required for development of the glymphatic system

Fluorescent Ca2+ indicators directly inhibit the Na,K-ATPase and disrupt cellular functions

Abdellatif Benraiss | Gene Therapy |

You May Also Like